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Abstract: We calculate the rates for the charged lepton flavour violating decays ℓi → ℓjγ,

τ → ℓπ, τ → ℓη, τ → ℓη′, µ− → e−e+e−, the six three body leptonic decays τ− → ℓ−i ℓ+
j ℓ−k

and the rate for µ − e conversion in nuclei in the Littlest Higgs model with T-parity

(LHT). We also calculate the rates for KL,S → µe, KL,S → π0µe and Bd,s → ℓiℓj . We

find that the relative effects of mirror leptons in these transitions are by many orders of

magnitude larger than analogous mirror quark effects in rare K and B decays analyzed

recently. In particular, in order to suppress the µ → eγ and µ− → e−e+e− decay rates

and the µ − e conversion rate below the experimental upper bounds, the relevant mixing

matrix in the mirror lepton sector VHℓ must be rather hierarchical, unless the spectrum of

mirror leptons is quasi-degenerate. We find that the pattern of the LFV branching ratios

in the LHT model differs significantly from the one encountered in the MSSM, allowing in

a transparent manner to distinguish these two models with the help of LFV processes. We

also calculate (g−2)µ and find the new contributions to aµ below 1·10−10 and consequently

negligible. We compare our results with those present in the literature.
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1. Introduction

Little Higgs models [1 – 3] offer an alternative route to the solution of the little hierarchy

problem. One of the most attractive models of this class is the Littlest Higgs model with T-

parity (LHT) [4], where the discrete symmetry forbids tree-level corrections to electroweak

observables, thus weakening the electroweak precision constraints [5]. In this model, the

new gauge bosons, fermions and scalars are sufficiently light to be discovered at LHC and

there is a dark matter candidate [6]. Moreover, the flavour structure of the LHT model

is richer than the one of the Standard Model (SM), mainly due to the presence of three

doublets of mirror quarks and three doublets of mirror leptons and their weak interactions

with the ordinary quarks and leptons.

Recently, in two detailed analyses, we have investigated in the LHT model ∆F =

2 [7] and ∆F = 1 [8] flavour changing neutral current (FCNC) processes, like particle-

antiparticle mixings, B → Xsγ, B → Xsℓ
+ℓ− and rare K and B decays. The first analysis

of particle-antiparticle mixing in this model was presented in [9] and the FCNC processes

in the LH model without T-parity have been presented in [10 – 14].

The most relevant messages of the phenomenological analyses in [7, 8, 11, 14] are:

• In the LH model without T-parity, which belongs to the class of models with con-

strained minimal flavour violation (CMFV) [15, 16], the new physics (NP) effects are

small as the NP scale f is required to be above 2 − 3TeV in order to satisfy the

electroweak precision constraints.

• In the LHT model, which is not stringently constrained by the latter precision tests

and contains new flavour and CP-violating interactions, large departures from the

SM predictions are found, in particular for CP-violating observables that are strongly

suppressed in the SM. These are first of all the branching ratio for KL → π0νν̄ and

the CP asymmetry Sψφ in the Bs → ψφ decay, but also Br(KL → π0ℓ+ℓ−) and

Br(K+ → π+νν̄). Smaller, but still significant, effects have been found in rare Bs,d

decays and ∆Ms,d.
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• The presence of left-over divergences in ∆F = 1 processes, that signals some sensitiv-

ity to the ultraviolet (UV) completion of the theory, introduces some theoretical un-

certainty in the evaluation of the relevant branching ratios both in the LH model [14]

and the LHT model [8]. On the other hand, ∆F = 2 processes and the B → Xsγ

decay are free from these divergences.

Now, it is well known that in the SM the FCNC processes in the lepton sector, like

ℓi → ℓjγ and µ− → e−e+e−, are very strongly suppressed due to tiny neutrino masses.

In particular, the branching ratio for µ → eγ in the SM amounts to at most 10−54, to be

compared with the present experimental upper bound, 1.2 · 10−11 [17], and with the one

that will be available within the next two years, ∼ 10−13 [18]. Results close to the SM

predictions are expected within the LH model without T-parity, where the lepton sector

is identical to the one of the SM and the additional O(v2/f2) corrections have only minor

impact on this result. Similarly the new effects on (g − 2)µ turn out to be small [19].

A very different situation is to be expected in the LHT model, where the presence of

new flavour violating interactions and of mirror leptons with masses of order 1TeV can

change the SM expectations up to 45 orders of magnitude, bringing the relevant branching

ratios for lepton flavour violating (LFV) processes close to the bounds available presently

or in the near future. Indeed in two recent interesting papers [20, 21], it has been pointed

out that very large enhancements of the branching ratios for ℓi → ℓjγ and τ → µπ are

possible within the LHT model.

The main goal of our paper is a new analysis of ℓi → ℓjγ, τ → µπ, and of other LFV

processes not considered in [20, 21], with the aim to find the pattern of LFV in this model

and to constrain the mass spectrum of mirror leptons and the new weak mixing matrix in

the lepton sector VHℓ, that in addition to three mixing angles contains three CP-violating

phases.1 In particular we have calculated the rates for µ− → e−e+e− and the six three

body leptonic τ decays τ− → ℓ−i ℓ+
j ℓ−k , as well as the µ − e conversion rate in nuclei. We

have also calculated the rates for KL,S → µe, KL,S → π0µe and Bd,s → ℓiℓj that are

sensitive to flavour violation both in the mirror quark and mirror lepton sectors. Finally

we calculated (g − 2)µ that has also been considered in [20, 21].

Our analysis confirms the findings of [20, 21] at the qualitative level: the impact of

mirror leptons on the charged LFV processes ℓi → ℓjγ and τ → µπ can be spectacular while

the impact on (g − 2)µ is small, although our analytical expressions differ from the ones

presented in [20, 21]. Moreover, our numerical analysis includes also other LFV processes,

not considered in [20, 21], where very large effects turn out to be possible.

While the fact that in the LHT model several LFV branching ratios can reach their

present experimental upper bounds is certainly interesting, it depends sensitively on the

parameters of the model. One of the most important results of the present paper is the

identification of correlations between various branching ratios that on the one hand are

less parameter dependent and on the other hand, and more importantly, differ significantly

from corresponding correlations in the Minimal Supersymmetric Standard Model (MSSM)

1A detailed analysis of the number of phases in the mixing matrices in the LHT model has recently been

presented in [22].
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discussed in [23 – 26]. The origin of this difference is that the dominance of the dipole

operators in the decays in question present in the MSSM is replaced in the LHT model

by the dominance of Z0-penguin and box diagram contributions with the dipole operators

playing now a negligible role. As a consequence, LFV processes can help to distinguish

these two models.

A detailed analysis of LFV in the LHT model is also motivated by the prospects in the

measurements of LFV processes with much higher sensitivity than presently available. In

particular the MEG experiment at PSI [18] should be able to test Br(µ → eγ) at the level

of O(10−13 − 10−14), and the Super Flavour Factory [27] is planned to reach a sensitivity

for Br(τ → µγ) of at least O(10−9). The planned accuracy of SuperKEKB of at least

O(10−8) for τ → µγ is also of great interest. Very important will also be an improved

upper bound on µ− e conversion in Ti. In this context the dedicated J-PARC experiment

PRISM/PRIME [28] should reach the sensitivity of O(10−18), i. e. an improvement by six

orders of magnitude relative to the present upper bound from SINDRUM II at PSI [29].

Our paper is organized as follows. In section 2 we briefly summarize those ingredients

of the LHT model that are of relevance for our analysis. Section 3 is devoted to the decays

ℓi → ℓjγ with particular attention to µ → eγ, for which a new stringent experimental upper

bound should be available in the coming years. In section 4 we calculate the branching ratio

for τ → µπ and other semi-leptonic τ decays for which improved upper bounds are available

from Belle. In section 5 we analyze the decays µ− → e−e+e−, τ− → µ−µ+µ− and τ− →
e−e+e−. In section 6 we calculate the µ − e conversion rate in nuclei, and in section 7 the

decays KL,S → µe and KL,S → π0µe. In section 8 we give the results for Bd,s → µe, τe, τµ

and in sections 9 and 10 for τ− → e−µ+e−, µ−e+µ−, µ−e+e−, e−µ+µ−. In section 11 we

calculate (g − 2)µ. A detailed numerical analysis of all these processes is presented in

section 12. In section 13 we analyze various correlations between LFV branching ratios

and compare them with the MSSM results in [23 – 26]. Finally, in section 14 we conclude

our paper with a list of messages from our analysis and with a brief outlook. Few technical

details are relegated to the appendices.

2. The LHT model and its lepton sector

A detailed description of the LHT model and the relevant Feynman rules can be found

in [8]. Here we just want to state briefly the ingredients needed for the present analysis.

2.1 Gauge boson sector

The T-even electroweak gauge boson sector consists only of the SM electroweak gauge

bosons W±
L , ZL and AL.

The T-odd gauge boson sector consists of three heavy “partners” of the SM gauge

bosons

W±
H , ZH , AH , (2.1)

with masses given to lowest order in v/f by

MWH
= gf , MZH

= gf , MAH
=

g′f√
5

. (2.2)
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All three gauge bosons will be present in our analysis. Note that

MAH
=

tan θW√
5

MWH
≃ MWH

4.1
, (2.3)

where θW is the weak mixing angle.

2.2 Fermion sector

The T-even sector of the LHT model contains just the SM fermions and the heavy top

partner T+. Due to the smallness of neutrino masses, the T-even contributions to LFV

processes can be neglected with respect to the T-odd sector. We comment on the issue of

neutrino masses in the LHT model in appendix A.

The T-odd fermion sector [30] consists of three generations of mirror quarks and leptons

with vectorial couplings under SU(2)L × U(1)Y . In this paper, except for KL,S → µe,

KL,S → π0µe, Bd,s → ℓiℓj and τ → ℓπ, ℓη, ℓη′, only mirror leptons are relevant. We will

denote them by
(

ν1
H

ℓ1
H

)

,

(

ν2
H

ℓ2
H

)

,

(

ν3
H

ℓ3
H

)

, (2.4)

with their masses satisfying to first order in v/f

mν
H1 = mℓ

H1 , mν
H2 = mℓ

H2 , mν
H3 = mℓ

H3 . (2.5)

2.3 Weak mixing in the mirror lepton sector

As discussed in detail in [9], one of the important ingredients of the mirror sector is the

existence of four CKM-like [31] unitary mixing matrices, two for mirror quarks and two for

mirror leptons:

VHu , VHd , VHℓ , VHν . (2.6)

They satisfy2

V †
HuVHd = VCKM , V †

HνVHℓ = V †
PMNS , (2.7)

where in VPMNS [32] the Majorana phases are set to zero as no Majorana mass term has been

introduced for right-handed neutrinos. The mirror mixing matrices in (2.6) parameterize

flavour violating interactions between SM fermions and mirror fermions that are mediated

by the heavy gauge bosons W±
H , ZH and AH . The notation in (2.6) indicates which of the

light fermions of a given electric charge participates in the interaction.

Thus VHℓ, the most important mixing matrix in the present paper, parameterizes the

interactions of light charged leptons with mirror neutrinos, mediated by W±
H , and with

mirror charged leptons, mediated by ZH and AH . Feynman rules for these interactions can

be found in [8]. VHν parameterizes, on the other hand, the interactions of light neutrinos

with mirror leptons.

2Note that it is VCKM but V
†
PMNS

appearing on the r. h. s., as the PMNS matrix is defined through

neutrino mixing, while the CKM matrix is defined through mixing in the down-type quark sector.
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In the course of our analysis of charged LFV decays it will be useful to introduce the

following quantities (i = 1, 2, 3):

χ
(µe)
i = V ∗ie

Hℓ V iµ
Hℓ , χ

(τe)
i = V ∗ie

Hℓ V iτ
Hℓ , χ

(τµ)
i = V ∗iµ

Hℓ V iτ
Hℓ , (2.8)

that govern µ → e, τ → e and τ → µ transitions, respectively.

We also recall the analogous quantities in the mirror quark sector (i = 1, 2, 3)

ξ
(K)
i = V ∗is

Hd V id
Hd , ξ

(d)
i = V ∗ib

Hd V id
Hd , ξ

(s)
i = V ∗ib

Hd V is
Hd , (2.9)

that we will need for the analysis of the decays KL,S → µe, KL,S → π0µe and Bd,s → ℓiℓj .

Following [22], we parameterize VHℓ in terms of three mixing angles θℓ
ij and three

complex phases δℓ
ij as a product of three rotations, and introducing a complex phase in

each of them,3 thus obtaining

VHℓ =







1 0 0

0 cℓ
23 sℓ

23e
−iδℓ

23

0 −sℓ
23e

iδℓ
23 cℓ

23






·







cℓ
13 0 sℓ

13e
−iδℓ

13

0 1 0

−sℓ
13e

iδℓ
13 0 cℓ

13






·







cℓ
12 sℓ

12e
−iδℓ

12 0

−sℓ
12e

iδℓ
12 cℓ

12 0

0 0 1







(2.10)

Performing the product one obtains the expression

VHℓ =







cℓ
12c

ℓ
13 sℓ

12c
ℓ
13e

−iδℓ
12 sℓ

13e
−iδℓ

13

−sℓ
12c

ℓ
23e

iδℓ
12 − cℓ

12s
ℓ
23s

ℓ
13e

i(δℓ
13−δℓ

23) cℓ
12c

ℓ
23 − sℓ

12s
ℓ
23s

ℓ
13e

i(δℓ
13−δℓ

12−δℓ
23) sℓ

23c
ℓ
13e

−iδℓ
23

sℓ
12s

ℓ
23e

i(δℓ
12

+δℓ
23

) − cℓ
12c

ℓ
23s

ℓ
13e

iδℓ
13 −cℓ

12s
ℓ
23e

iδℓ
23 − sℓ

12c
ℓ
23s

ℓ
13e

i(δℓ
13
−δℓ

12
) cℓ

23c
ℓ
13







(2.11)

As in the case of the CKM matrix the angles θℓ
ij can all be made to lie in the first quadrant

with 0 ≤ δℓ
12, δ

ℓ
23, δ

ℓ
13 < 2π. The matrix VHν is then determined through VHν = VHℓVPMNS.

2.4 The parameters of the LHT model

The new parameters of the LHT model, relevant for the present study, are

f , mℓ
H1 , mℓ

H2 , mℓ
H3 , θℓ

12 , θℓ
13 , θℓ

23 , δℓ
12 δℓ

13 δℓ
23 , (2.12)

and the ones in the mirror quark sector that can be probed by FCNC processes in K and

B meson systems, as discussed in detail in [7, 8].

The determination of the parameters in (2.12) with the help of LFV processes is clearly

a formidable task. However, if the new particles present in the LHT model are discovered

once LHC starts its operation, the parameter f will be determined from MWH
, MZH

or

MAH
. Similarly the mirror lepton masses mℓ

Hi will be measured.

The only remaining free parameters among the ones listed in (2.12) will then be θℓ
ij

and δℓ
ij , which can be determined once many LFV processes have been measured.

3Note that the two additional phases in VHℓ have nothing to do with the possible Majorana nature of

neutrinos.
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γ

u, c, t

W
b s

Figure 1: Diagrams contributing to B → Xsγ in the SM.

3. ℓi → ℓjγ in the LHT model

3.1 Preliminaries

In [7] we have shown how one can obtain the branching ratio Br(B → Xsγ) in the LHT

model directly from the B → Xsγ and b → s gluon decays in the SM by simply changing

the arguments of the two SM functions D′
0(x) and E′

0(x) and adjusting properly various

overall factors. The explicit formulae for these functions are given in appendix B.

Here we will proceed in an analogous way. We will first derive Br(µ → eγ) in the SM

for arbitrary neutrino masses from the calculation of Br(B → Xsγ) in the same model.

This will allow us to obtain in a straightforward manner Br(µ → eγ) in the LHT model,

when also some elements of the Br(B → Xsγ) calculation in this model in [7] are taken

into account. The generalization to τ → µγ and τ → eγ will be automatic.

The current experimental upper bounds for µ → eγ, τ → µγ and τ → eγ are given

by [17, 33]4

Br(µ → eγ) < 1.2 · 10−11 , (3.1)

Br(τ → µγ) < 1.6 · 10−8 , Br(τ → eγ) < 9.4 · 10−8 . (3.2)

3.2 µ → eγ in the SM

The diagrams for the B → Xsγ and µ → eγ decays in the SM are shown in figures 1

and 2, respectively. In Rξ gauge also the corresponding diagrams with Goldstone bosons

contribute. The diagram with the photon coupled directly to the internal fermion line,

present in B → Xsγ, is absent in the case of µ → eγ due to the neutrino charge neutrality.

In the case of the B → Xsγ decay the function D′
0(x) resulting from the diagrams in

figure 1 can be decomposed as follows

D′
0(x) =

[

D′
0(x)

]

Abelian
+

[

D′
0(x)

]

triple
, (3.3)

where the first term on the r. h. s. represents the sum of the first and the last diagram in

figure 1 and the second term the second diagram.

The inspection of an explicit calculation of the b → sγ transition in the ’t Hooft-

Feynman gauge gives
[

D′
0(x)

]

Abelian
= (2Qd − Qu)E′

0(x) , (3.4)

4The bounds in [33] have been obtained by combining Belle [34] and BaBar [35] results.
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Figure 2: Diagrams contributing to µ → eγ in the SM.

with Qd and Qu being the electric charges of external and internal fermions, respectively.

Setting Qd = −1/3 and Qu = 2/3 in (3.4) and using (3.3) we find

[

D′
0(x)

]

triple
= D′

0(x) +
4

3
E′

0(x) . (3.5)

This contribution is independent of fermion electric charges and can be directly used in

the µ → eγ decay.

Turning now our attention to the latter decay we find first from (3.4)
[

D′
0(x)

]µ→eγ

Abelian
= −2E′

0(x) , (3.6)

as Qu = 0 and Qd = −1 in this case. The final result for the relevant short distance

function in the case of µ → eγ is then given by the sum of (3.5) and (3.6). Denoting this

function by H(xi
ν) we find

H(xi
ν) = D′

0(x
i
ν) −

2

3
E′

0(x
i
ν) , xi

ν =

(

mi
ν

MW

)2

. (3.7)

The generalization of the known SM result to arbitrary neutrino masses reads then

Br(µ → eγ)SM =
3α

2π

∣

∣

∣

∣

∣

∑

i

VeiV
∗
µiH(xi

ν)

∣

∣

∣

∣

∣

2

, (3.8)

with Vij being the elements of the PMNS matrix.

Now, in the limit of small neutrino masses,

H(xi
ν)−→

xi
ν

4
as xi

ν → 0 , (3.9)

and we confirm the known result

Br(µ → eγ)SM =
3α

32π

∣

∣

∣

∣

∣

∑

i

VeiV
∗
µix

i
ν

∣

∣

∣

∣

∣

2

. (3.10)

Assuming that the angle θ13 of the PMNS matrix is not very small so that ∆m2
atm

dominates the branching ratio, we find

Br(µ → eγ)SM ≃ 0.015α s2
13

[

∆m2
atm

M2
W

]2

< 10−54 , (3.11)

where ∆m2
atm

<∼ 3.2 · 10−3 eV2 and s13 < 0.2 [36].
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+
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WHWH

νi
H
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+

γ
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Hℓi

H

ZH , AH

µ e +

γ
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H

ZH , AH
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Figure 3: Diagrams contributing to µ → eγ in the LHT model.

3.3 µ → eγ in the LHT model

The diagrams contributing to µ → eγ in the LHT model are shown in figure 3. We show

only the contributions from the mirror fermion sector as the T-even sector gives a negligible

contribution. Note that the heavy scalar triplet Φ does not contribute at this order in v/f

(see [7, 8] for details).

Let us write the resulting branching ratio as follows

Br(µ → eγ)LHT =
3α

2π
|∆WH

+ ∆ZH
+ ∆AH

|2 , (3.12)

with the different terms representing the W±
H , ZH and AH contributions.

Defining

yi =
mℓ

Hi
2

M2
WH

, y′i = a yi with a =
5

tan2 θW
≃ 16.6 , (3.13)

and including the factor

M2
WL

M2
WH

=
1

4

v2

f2
, (3.14)

we find, using (3.8),

∆WH
=

1

4

v2

f2

∑

i

χ
(µe)
i H(yi) , (3.15)

with H defined in (3.7) and χ
(µe)
i in (2.8).

The neutral gauge boson contributions can directly be deduced from (4.10) of [7].

Including a factor 3 that takes into account the difference between the electric charges of
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quarks and leptons, we obtain from the last two terms in (4.10) of [7]

∆ZH
=

1

4

v2

f2

∑

i

χ
(µe)
i

[

−1

2
E′

0(yi)

]

, (3.16)

∆AH
=

1

4

v2

f2

∑

i

χ
(µe)
i

[

− 1

10
E′

0(y
′
i)

]

. (3.17)

Finally, adding the three contributions in (3.15)–(3.17), we find using (3.12)

Br(µ → eγ)LHT =
3α

2π

∣

∣D̄′µe
odd

∣

∣

2
, (3.18)

with

D̄′µe
odd =

1

4

v2

f2

[

∑

i

χ
(µe)
i

(

D′
0(yi) −

7

6
E′

0(yi) −
1

10
E′

0(y
′
i)

)

]

, (3.19)

with χ
(µe)
i defined in (2.8), yi in (3.13) and D′

0, E′
0 given in appendix B. The formulae (3.18)

and (3.19) represent the main result of this section.

Let us next compare our result with the one of Goyal [20], which has been obtained

without including the interferences between ∆WH
, ∆ZH

and ∆AH
, whose omission cannot

be justified. His results for |∆WH
|2, |∆ZH

|2 and |∆AH
|2 agree with ours, provided the

latter contribution is divided by 25 in (15) of [20], once one assumes the straightforward

relation FAH
(ZAH

) = FZH
(aZZH

) between the AH and ZH short distance functions. Note

that the short distance functions Fj(zi) in [20] still contain mass independent terms that

disappear in the final expressions after the unitarity of the VHℓ matrix has been used. For

this reason we have removed such terms from the functions D′
0(x) and E′

0(x). Finally, in

contrast to [20], we find that the contributions of the scalar triplet Φ are of higher order

in v/f .

In a recent paper by Choudhury et al. [21] a new analysis of ℓi → ℓjγ has been

presented in which the interference terms have been taken into account. Unfortunately,

the formulae in that paper are quite complicated thus preventing us from making an ana-

lytic comparison. On the other hand, we have performed a numerical comparison, finding

significant differences between our results and those in [21].

3.4 τ → eγ and τ → µγ in the LHT model

The branching ratios for τ → eγ and τ → µγ can easily be found in analogy to µ → eγ.

We find

Br(τ → eγ) =
3α

2π
Br(τ− → ντe

−ν̄e)
∣

∣D̄′ τe
odd

∣

∣

2
, (3.20)

Br(τ → µγ) =
3α

2π
Br(τ− → ντµ

−ν̄µ)
∣

∣D̄′ τµ
odd

∣

∣

2
, (3.21)

where D̄′ τe
odd and D̄′ τµ

odd can be obtained from (3.19) by replacing (µe) with (τe) and (τµ),

respectively. Furthermore [37]

Br(τ− → ντe
−ν̄e) = (17.84 ± 0.05)% , Br(τ− → ντµ

−ν̄µ) = (17.36 ± 0.05)% . (3.22)
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Hℓi
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uu

τ µ

ZL

WHWH

νi
H

uu

τ µ

ZL

WH

νi
H

uu

τ
µ

ZL

ZH , AH

ℓi
H

uu

τ
µ

WH WH

τ µ

u u

νi
H

d
j
H

ZH , AH ZH , AH

τ µ

u u

ℓi
H

u
j
H

ZH , AH ZH , AH

τ µ

u u

ℓi
H

u
j
H

Figure 4: Diagrams contributing to τ → µπ in the LHT model. Similar diagrams, but with d

quarks in the final state, also contribute.

4. Semi-leptonic τ decays

Recently the Belle [38] and BaBar [39] collaborations presented improved upper bounds

for the decays τ → ℓP (P = π, η, η′), which have been combined [33] to

Br(τ → µπ) < 5.8 · 10−8 , Br(τ → µη) < 5.1 · 10−8 , Br(τ → µη′) < 5.3 · 10−8 ,

(4.1)

Br(τ → eπ) < 4.4 · 10−8 , Br(τ → eη) < 4.5 · 10−8 , Br(τ → eη′) < 9.0 · 10−8 ,

(4.2)

thus increasing the interest in investigating these branching ratios in the LHT model.

The branching ratios for these semi-leptonic decays have already been estimated within

the LHT model by Goyal [20], but with the rough approximation consisting in the use of

the effective Hamiltonian for K0 − K̄0 mixing. Here we will study the semileptonic decays

in question with a more accurate approach, having at hand the recent analysis of rare K

and B decays in the LHT model [8].
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The diagrams for τ → µπ are shown in figure 4. As π0 has the following flavour

structure

π0 =
ūu − d̄d√

2
, (4.3)

there are two sets of diagrams, with ūu and d̄d in the final state. The corresponding

effective Hamiltonians can directly be obtained from [8]. They involve the short-distance

functions X̄τµ
odd and −Ȳ τµ

odd for ūu and d̄d, respectively. Taking into account the opposite

sign that is conventionally chosen to define the two short distance functions, the effective

Hamiltonian that includes both sets of diagrams is simply given as follows

Heff =
GF√

2

α

2π sin2 θW

(

X̄τµ
odd(ūu)V −A − Ȳ τµ

odd(d̄d)V −A

)

(µ̄τ)V −A . (4.4)

Here X̄τµ
odd and Ȳ τµ

odd have the same structure as the functions calculated in [8] in the context

of rare K and B decays. Adapting them to the lepton sector we find:

X̄τµ
odd =

[

χ
(τµ)
2

(

Juū(y2, z) − Juū(y1, z)
)

+ χ
(τµ)
3

(

Juū(y3, z) − Juū(y1, z)
)

]

, (4.5)

Ȳ τµ
odd =

[

χ
(τµ)
2

(

Jdd̄(y2, z) − Jdd̄(y1, z)
)

+ χ
(τµ)
3

(

Jdd̄(y3, z) − Jdd̄(y1, z)
)

]

, (4.6)

where

Juū (yi, z) =
1

64

v2

f2

[

yiSodd + F uū(yi, z;WH)

+4
(

G(yi, z;ZH) + G1(y
′
i, z

′;AH) + G2(yi, z; η)
)

]

, (4.7)

Jdd̄ (yi, z) =
1

64

v2

f2

[

yiSodd + F dd̄(yi, z;WH)

−4
(

G(yi, z;ZH) + G1(y
′
i, z

′;AH) − G2(yi, z; η)
)

]

, (4.8)

Sodd =
1

ε
+ log

µ2

M2
WH

−→ log
(4πf)2

M2
WH

, (4.9)

with the functions F uū, F dd̄, G, G1 and G2 given in appendix B, the leptonic variables yi

and y′i defined in (3.13) and the analogous variables for degenerate mirror quarks5 given

by

z =
mq

H
2

M2
WH

, z′ = a z , η =
1

a
. (4.10)

As

〈0|(ūu)V −A|π0〉 = −〈0|(d̄d)V −A|π0〉 =
Fπpµ

π√
2

, (4.11)

5The limit of degenerate mirror quarks represents here a good approximation, as the box contributions

vanish in the limit of degenerate mirror leptons and, consequently, the inclusion of mass splittings in the

quark sector represents a higher order effect.
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where Fπ ≃ 131MeV is the pion decay constant, we find

Br(τ → µπ) =
G2

F α2F 2
πm3

τττ

128π3 sin4 θW
|X̄τµ

odd + Ȳ τµ
odd|2 , (4.12)

with ττ and mτ being the lifetime and mass of the decaying τ , and neglecting suppressed

pion and muon mass contributions of the order O(m2
π/m2

τ ) and O(m2
µ/m2

τ ). The branching

ratio for the τ → eπ decay can be obtained very easily from (4.12) by simply replacing

(τµ) with (τe). The generalization of (4.12) to the decays τ → µη and τ → µη′ is quite

straightforward too, although slightly complicated by mixing in the η − η′ system.

The understanding of η − η′ mixing has largely improved in the last decade mainly

thanks to the formulation of a new mixing scheme [40, 41], where not one but two angles

are introduced to relate the physical states (η, η′) to the octet and singlet states (η8, η0),

as

|η〉 = cos θ8|η8〉 − sin θ0|η0〉 , |η′〉 = sin θ8|η8〉 + cos θ0|η0〉 , (4.13)

with

|η8〉 =
1√
6
(|ūu〉 + |d̄d〉 − 2|s̄s〉) , |η0〉 =

1√
3
(|ūu〉 + |d̄d〉 + |s̄s〉) . (4.14)

In this mixing scheme, four independent decay constants are involved. Each of the two

physical mesons (P = η, η′), in fact, has both octet (a = 8) and singlet (a = 0) components,

defined by

〈0|(q̄ λa

2
q)V −A|P (p)〉 =

F a
P pµ√

2
, (4.15)

where the SU(3) generators λa satisfy the normalization convention Tr[λaλb] = 2δab. They

are conveniently parameterized [40] in terms of the two mixing angles (θ8, θ0) and two basic

decay constants (F8, F0), as

(

F 8
η F 0

η

F 8
η′ F 0

η′

)

=

(

F8 cos θ8 −F0 sin θ0

F8 sin θ8 F0 cos θ0

)

. (4.16)

Working in this mixing scheme and generalizing the expression for the τ → µπ branch-

ing ratio in (4.12), one obtains

Br(τ → µη) =
G2

F α2F 2
πm3

τττ

128π3 sin4 θW

∣

∣

∣

∣

∣

cos θ8√
3

F8

Fπ
(X̄τµ

odd + Ȳ τµ
odd) −

√

2

3
sin θ0

F0

Fπ
(X̄τµ

odd − 2 Ȳ τµ
odd)

∣

∣

∣

∣

∣

2

,

Br(τ → µη′) =
G2

F α2F 2
πm3

τττ

128π3 sin4 θW

∣

∣

∣

∣

∣

sin θ8√
3

F8

Fπ
(X̄τµ

odd + Ȳ τµ
odd) +

√

2

3
cos θ0

F0

Fπ
(X̄τµ

odd − 2 Ȳ τµ
odd)

∣

∣

∣

∣

∣

2

.

(4.17)

We conclude this section noting that the function Sodd in (4.9) represents a left-over

singularity that signals some sensitivity of the final results to the UV completion of the

theory. This issue is known from the study of electroweak precision constraints [4] and

has been discussed in detail in the context of the LH model without T-parity [14] and,
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more recently, also with T-parity [8]. We refer to the latter paper for a detailed discussion.

Here we just mention that, in estimating the contribution of these logarithmic singularities

as in (4.9), we have assumed the UV completion of the theory not to have a complicated

flavour pattern or at least that it has no impact below the cut-off. Clearly, this additional

assumption lowers the predictive power of the theory. In spite of that, we believe that the

general picture of LFV processes presented here is only insignificantly shadowed by this

general property of non-linear sigma models.

5. µ−
→ e−e+e−, τ−

→ µ−µ+µ− and τ−
→ e−e+e−

Next, we will consider the decay µ− → e−e+e−, for which the experimental upper bound

reads [42]

Br(µ− → e−e+e−) < 1.0 · 10−12 . (5.1)

This decay is governed, analogously to the b → sµ+µ− transition, analyzed in the LHT

model already in [8], by contributions from γ- and Z0-penguins and by box diagrams.

However, the fact that now in the final state two identical particles are present does not

allow to use directly the known final expressions for b → sµ+µ−, although some interme-

diate results from the latter decay turned out to be useful here. Also the general result for

µ− → e−e+e− obtained in [43], which has been corrected in [23, 25], turned out to be very

helpful.

Performing the calculation in the unitary gauge, where we found the contribution from

the Z0-penguin to vanish [8], we find for the relevant amplitudes from photon penguins

and box diagrams:6

Aγ′ =
GF√

2

e2

8π2

1

q2
D̄′µe

odd

[

ē(p1)(mµiσαβqβ(1+γ5))µ(p)
]

⊗ [ē(p2)γ
αe(p3)]−(p1 ↔ p2) , (5.2)

Aγ = −
[

4
GF√

2

e2

8π2
Z̄µe

odd [ē(p1)γα(1 − γ5)µ(p)] ⊗ [ē(p2)γ
αe(p3)] − (p1 ↔ p2)

]

, (5.3)

Abox = 2
GF√

2

α

2π sin2 θW
Ȳ µe

e,odd [ē(p1)γα(1 − γ5)µ(p)] ⊗ [ē(p2)γ
α(1 − γ5)e(p3)] . (5.4)

The function D̄′µe
odd is given in (3.19), while the functions Ȳ µe

e,odd and Z̄µe
odd can easily be

obtained from those calculated in [8]. The analogy with the b → sµ+µ− decay, together

with the observation that the µ− → e−e+e− decay in question involves only leptons in

both the initial and final states, allow us to write7

Ȳ µe
e,odd =χ

(µe)
2

3
∑

i=1

|V ie
Hℓ|2

[

Jdd̄(y2, yi)−Jdd̄(y1, yi)
]

+χ
(µe)
3

3
∑

i=1

|V ie
Hℓ|2

[

Jdd̄(y3, yi)−Jdd̄(y1, yi)
]

(5.5)

6Following [43], our sign conventions are chosen such that Heff is determined from −A.
7The subscript e of Ȳ

µe
e,odd

denotes which of the SM charged leptons appears on the flavour conserving

side of the relevant box diagrams.
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with Jdd̄ given in (4.8). Following a similar reasoning we can write for the Z̄µe
odd function

Z̄µe
odd =

[

χ
(µe)
2

(

Zodd(y2) − Zodd(y1)
)

+ χ
(µe)
3

(

Zodd(y3) − Zodd(y1)
)

]

, (5.6)

where

Zodd(yi) = Codd(yi) +
1

4
Dodd(yi) . (5.7)

The explicit expressions of the Codd and Dodd functions are given in appendix B.8

Here, we just note that as a consequence of the charge difference between the leptons

involved in µ− → e−e+e− and the quarks involved in b → sµ+µ−, Dodd in (5.7) differs

from the analogous function found in [8].

Comparing these expressions to the general expressions for the amplitudes given in [43,

25], we easily obtain Γ(µ− → e−e+e−). Normalizing by Γ(µ− → e−ν̄eνµ), we find the

branching ratio for the decay µ− → e−e+e− to be

Br(µ− → e−e+e−) =
Γ(µ− → e−e+e−)

Γ(µ− → e−ν̄eνµ)
(5.8)

=
α2

π2

[

3
∣

∣Z̄µe
odd

∣

∣

2
+ 3Re

(

Z̄µe
odd(D̄′µe

odd)∗
)

+
∣

∣D̄′µe
odd

∣

∣

2
(

log
mµ

me
− 11

8

)

+
1

2 sin4 θW

∣

∣

∣Ȳ
µe
e,odd

∣

∣

∣

2
− 2

sin2 θW
Re

(

Z̄µe
odd(Ȳ µe

e,odd)
∗
)

− 1

sin2 θW
Re

(

D̄′µe
odd(Ȳ µe

e,odd)
∗
)

]

.

For τ− → µ−µ+µ− we make the following replacements in (5.2)–(5.8):

V ie
Hℓ → V iµ

Hℓ , (µe) → (τµ) , mµ → mτ , me → mµ , (5.9)

so that, in particular, Ȳ τµ
µ,odd is now present. Furthermore, in (5.8) the normalization

Γ(µ− → e−νµν̄e) is replaced by Γ(τ− → µ−ντ ν̄µ), so that the final result for Br(τ− →
µ−µ+µ−) contains an additional factor Br(τ− → µ−ντ ν̄µ). In the case of τ− → e−e+e−

the replacements in (5.5)–(5.8) amount only to

(µe) → (τe) , mµ → mτ , (5.10)

having now Ȳ τe
e,odd, and in (5.8) Γ(µ− → e−νµν̄e) is replaced by Γ(τ− → e−ντ ν̄e) and

an additional factor Br(τ− → e−ντ ν̄e) appears. In doing this we neglect in all three

expressions me,µ with respect to mτ .

6. µ − e conversion in nuclei

Similarly to the decays µ → eγ and µ− → e−e+e−, stringent experimental upper bounds

on µ − e conversion in nuclei exist. In particular, the experimental upper bound on µ − e

8Note that the functions Codd and Dodd are gauge dependent and have been calculated in the ’t Hooft-

Feynman gauge. However, the function Z̄
µe
odd

is gauge independent, so that it can be used also in the unitary

gauge calculation above.
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conversion in 48
22Ti reads [29]

R(µTi → eTi) < 4.3 · 10−12 , (6.1)

and the dedicated J-PARC experiment PRISM/PRIME should reach a sensitivity of

O(10−18) [28].

A very detailed calculation of the µ − e conversion rate in various nuclei has been

performed in [44], using the methods developed by Czarnecki et al. [45]. It has been

emphasized in [44] that the atomic number dependence of the conversion rate can be used

to distinguish between different theoretical models of LFV. Useful general formulae can

also be found in [43].

We have calculated the µ − e conversion rate in nuclei in the LHT model using the

general model-independent formulae of both [43] and [44]. We have checked numerically

that, for relatively light nuclei such as Ti, both results agree within 10%. Therefore, we

will give the result for µ− e conversion in nuclei derived from the general expression given

in [43], as it has a more transparent structure than the one of [44].

Following a similar reasoning as in the previous section, we find from (58) of [43]

Γ(µX → eX) =
G2

F

8π4
α5 Z4

eff

Z
|F (q)|2m5

µ

·
∣

∣

∣

∣

Z
(

4Z̄µe
odd + D̄′µe

odd

)

− (2Z + N)
X̄µe

odd

sin2 θW
+ (Z + 2N)

Ȳ µe
odd

sin2 θW

∣

∣

∣

∣

2

, (6.2)

where X̄µe
odd and Ȳ µe

odd are obtained from (4.5) and (4.6) by making the replacement (τµ) →
(µe), and D̄′µe

odd and Z̄µe
odd are given in (3.19) and (5.6), respectively. Z and N denote the

proton and neutron number of the nucleus. Zeff has been determined in [46] and F (q2) is

the nucleon form factor. For X = 48
22Ti, Zeff = 17.6 and F (q2 ≃ −m2

µ) ≃ 0.54 [47].

The µ − e conversion rate R(µX → eX) is then given by

R(µX → eX) =
Γ(µX → eX)

ΓX
capture

, (6.3)

with ΓX
capture being the µ capture rate of the element X. The experimental value is given

by ΓTi
capture = (2.590 ± 0.012) · 106 s−1 [48].

In our numerical analysis of section 12 we will restrict ourselves to µ − e conversion

in 48
22Ti, for which the most stringent experimental upper bound exists and where the

approximations entering (6.2) work very well. For details, we refer the reader to [43, 44, 47].

7. KL,S → µe and KL,S → π0µe in the LHT model

The rare decay KL → µe is well known from the studies of the Pati-Salam (PS) model [49],

where it proceeds through a tree level leptoquark exchange in the t-channel. The stringent

upper bound on its rate [50]

Br(KL → µe) = Br(KL → µ+e−) + Br(KL → µ−e+) < 4.7 · 10−12 , (7.1)
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Figure 5: Diagrams contributing to KL → µ+e− in the LHT model. Similar diagrams describe

KL → µ−e+.

implies the mass of the leptoquark gauge boson to be above 103 TeV [51]. By increasing the

weak gauge group of the PS model in the context of the so-called “Petite Unification” [52]

and placing ordinary fermions in multiplets with heavy new fermions, and not with the

ordinary SM fermions as in the PS model, it is possible to avoid tree level contributions

to KL → µe so that the process is dominated by the box diagrams with new heavy gauge

bosons, heavy quarks and heavy leptons exchanged. The relevant masses of these particles

can then be decreased to O(1TeV) without violating the bound in (7.1).

In the SM the decay KL → µe is forbidden at the tree level but can proceed through

box diagrams in the case of non-degenerate neutrino masses. Similarly to µ → eγ it is too

small to be measured.

In the LHT model as well, KL → µe appears first at one loop level. It proceeds through

the diagrams shown in figure 5 that should be compared with very similar diagrams in

figure 1 of [7] contributing to particle-antiparticle mixing in the T-odd sector of the LHT

model. The main difference is the appearance of leptons in the lower part of the box

diagrams instead of quarks, leading to a different structure of the loop functions once the

unitarity of the matrices VHd and VHℓ has been used.

The effective Hamiltonian for KL → µe can be directly obtained from (3.11) of [7]

by removing the QCD factor η2, appropriately changing the CKM-like factors and the

arguments of the short distance functions and multiplying by 2 to correct for a different

combinatorial factor.

Taking into account that both the µ+e− and µ−e+ final states are experimentally

detected, the relevant effective Hamiltonian reads

Heff =
G2

F

32π2
M2

WL

v2

f2

∑

i,j

ξ
(K)
i FH(zi, yj)

[

χ
(µe)
j (s̄d)V −A(ēµ)V −A (7.2)

+ χ
(µe)
j

∗
(s̄d)V −A(µ̄e)V −A

]

+ h.c. ,

where χ
(µe)
i and yi are defined in (2.8) and (3.13), and ξ

(K)
i and zi belong to the quark

sector and are defined as

ξ
(K)
i = V ∗is

Hd V id
Hd , zi =

mq
Hi

2

M2
WH

. (7.3)
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The short distance functions read

FH(zi, yj) = F (zi, yj ;WH) + G(zi, yj;ZH) + A1(zi, yj;ZH) + A2(zi, yj ;ZH) , (7.4)

where the different contributions correspond to “WW”, “ZZ”, “AA” and “ZA” diagrams,

respectively. Explicit expressions for the functions F , G, A1 and A2 can be found in

appendix B.

Using the unitarity of the VHd and VHℓ matrices we find

Heff =
G2

F

32π2
M2

WL

v2

f2

{

[

χ
(µe)
2 ξ

(K)
2 R(z2, z1, y1, y2) + χ

(µe)
3 ξ

(K)
3 R(z3, z1, y1, y3)

+ χ
(µe)
2 ξ

(K)
3 R(z3, z1, y1, y2) + χ

(µe)
3 ξ

(K)
2 R(z2, z1, y1, y3)

]

(s̄d)V −A(ēµ)V −A

+
[

χ
(µe)
2

∗
ξ
(K)
2 R(z2, z1, y1, y2) + χ

(µe)
3

∗
ξ
(K)
3 R(z3, z1, y1, y3)

+ χ
(µe)
2

∗
ξ
(K)
3 R(z3, z1, y1, y2) + χ

(µe)
3

∗
ξ
(K)
2 R(z2, z1, y1, y3)

]

(s̄d)V −A(µ̄e)V −A

}

+ h.c. , (7.5)

where

R(zi, zj , yk, yl) = FH(zi, yl) + FH(zj , yk) − FH(zj , yl) − FH(zi, yk) . (7.6)

We remark that the relevant operators differ from (d̄γµe)(µ̄γµs) present in the PS

model which is characteristic for transitions mediated by leptoquark exchanges. Therefore,

the branching ratio for KL → µe in the LHT model is most straightforwardly obtained

from the one for KL → µ+µ− in the SM, after the difference between µ+µ− and µe has

been taken into account.

With the help of (XI.44) and (XXV.1) of [53] we easily find

Br(KL → µe) = Br(KL → µ+e−) + Br(KL → µ−e+) (7.7)

=
G2

F

128π4
M4

WL

v4

f4
Br(K+ → µ+ν)

τ(KL)

τ(K+)

1

|Vus|2

·

∣

∣

∣

∣

∣

∣

∑

i,j=2,3

Re(ξ
(K)
i )χ

(µe)
j R(zi, z1, y1, yj)

∣

∣

∣

∣

∣

∣

2

. (7.8)

Here [37, 54]

Br(K+ → µ+ν) = (63.44 ± 0.14)% ,
τ(KL)

τ(K+)
= 4.117 ± 0.019 , |Vus| = 0.225 ± 0.001 .

(7.9)

The corresponding expression for Br(KS → µe) is obtained from (7.7) through the

replacements [37]

τ(KL)

τ(K+)
−→ τ(KS)

τ(K+)
= (7.229 ± 0.014) · 10−3 , Re(ξ

(K)
i ) −→ Im(ξ

(K)
i ) . (7.10)
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Due to τ(KS) ≪ τ(KL), the branching ratio Br(KS → µe) is expected to be typically by

two orders of magnitude smaller than Br(KL → µe) unless Im(ξ
(K)
i ) ≫ Re(ξ

(K)
i ).

The decay KL → π0µe in the LHT model is again governed by the effective Hamiltonian

in (7.5). This time it is useful to perform the calculation of the branching ratio in analogy

with KL → π0νν̄ [55]. Removing the overall factor 3 in Br(KL → π0νν̄) corresponding to

three neutrino flavours, we find

Br(KL → π0µe) = Br(KL → π0µ+e−) + Br(KL → π0µ−e+)

=
G2

F M4
WL

128π4

v4

f4
Br(K+ → π0µ+ν)

τ(KL)

τ(K+)

1

|Vus|2

·

∣

∣

∣

∣

∣

∣

∑

i,j=2,3

Im(ξ
(K)
i )χ

(µe)
j R(zi, z1, y1, yj)

∣

∣

∣

∣

∣

∣

2

. (7.11)

Here [37],

Br(K+ → π0µ+ν) = (3.32 ± 0.06)% . (7.12)

We note that this time Im(ξ
(K)
i ) instead of Re(ξ

(K)
i ) enters, coming from the difference in

sign between the relations

〈π0|(d̄s)V −A|K̄0〉 = −〈π0|(s̄d)V −A|K0〉 (7.13)

and

〈0|(d̄s)V −A|K̄0〉 = +〈0|(s̄d)V −A|K0〉 . (7.14)

The corresponding expression for Br(KS → π0µe) is obtained from (7.11) through the

replacements
τ(KL)

τ(K+)
−→ τ(KS)

τ(K+)
, Im(ξ

(K)
i ) −→ Re(ξ

(K)
i ) . (7.15)

We would like to emphasize that in deriving the formulae for Br(KL,S → µe) and

Br(KL,S → π0µe) we have neglected the contributions from CP violation in K0 − K̄0

mixing (indirect CP violation). For instance in the case of Br(KL → π0µe) only CP

violation in the amplitude (direct CP violation) has been taken into account. The indirect

CP violation alone gives the contribution

Br(KL → π0µe)ind. = Br(KS → π0µe)|εK |2 (7.16)

and needs only to be taken into account, together with the interference with the contri-

bution from direct CP violation, for Im(ξ
(K)
i ) ≪ Re(ξ

(K)
i ). The latter case, however, is

uninteresting since it corresponds to an unmeasurably small branching ratio. This should

be contrasted with the case of KL → π0e+e−, where the indirect CP violation turns

out to be dominant [56]. The origin of the difference is that photon penguins, absent in

KL → π0µe, are present in KL → π0e+e− and the structure of Heff is rather different

from (7.5). Moreover, while the estimate of indirect CP violation to KL → π0µe in the

LHT model can be done perturbatively, this is not the case for KL → π0e+e−, where the
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matrix elements of the usual ∆F = 1 four quark operators have to be taken into account

together with renormalization group effects at scales below MW .

In summary the branching ratios for Br(KL,S → µe) and Br(KL,S → π0µe) in the LHT

model can be calculated fully in perturbation theory and are thus as theoretically clean as

KL → π0νν̄. As seen in the formulae (7.7), (7.10), (7.11) and (7.15) above, Br(KL → µe)

and Br(KS → π0µe) are governed by Re(ξ
(K)
i ), while Br(KS → µe) and Br(KL → π0µe)

by Im(ξ
(K)
i ). Neglecting the indirect CP violation, we find then that in the so-called

“K-scenario” of [8], the T-odd contributions to Br(KL → µe) and Br(KS → π0µe) are

highly suppressed, while Br(KS → µe) and Br(KL → π0µe) are generally non-vanishing.

The opposite is true in the case of the “Bs-scenario” in which only Br(KL → µe) and

Br(KS → π0µe) differ significantly from zero.

This discussion shows that the measurements of Br(KL → µe) and Br(KL → π0µe)

will transparently shed some light on the complex phases present in the mirror quark sector,

and from the point of view of the LHT model, the measurement of Br(KL → π0µe) at the

level of 10−15 will be a clear signal of new CP-violating phases at work.

8. Bd,s → µe, Bd,s → τe and Bd,s → τµ

The decays of neutral B-mesons to two different charged leptons proceed similarly to the

KL → µe decay discussed in section 7. The effective Hamiltonian describing these processes

receive again contributions only from box diagrams. For the Bd → µe decay, it reads

Heff(Bd → µe) =
G2

F

32π2
M2

WL

v2

f2

∑

i,j

ξ
(d)
i FH(zi, yj)

[

χ
(µe)
j (b̄d)V −A(ēµ)V −A

+χ
(µe)∗
j (b̄d)V −A(µ̄e)V −A

]

, (8.1)

with ξ
(d)
i = V ib∗

Hd V id
Hd. Using the unitarity of the VHd and VHℓ matrices, it becomes

Heff(Bd → µe) =
G2

F

32π2
M2

WL

v2

f2

∑

i,j=2,3

ξ
(d)
i R(zi, z1, y1, yj)

[

χ
(µe)
j (b̄d)V −A(ēµ)V −A (8.2)

+χ
(µe)∗
j (b̄d)V −A(µ̄e)V −A

]

,

with R(zi, zj , yk, yl) being the combination of short distance functions defined in (7.6).

The effective Hamiltonians describing the remaining decays have a similar structure

and can easily be derived from Heff(Bd → µe) in (8.2) through the following replacements

Heff(Bs → µe) : ξ
(d)
i → ξ

(s)
i ,

Heff(Bd → τe) : χ
(µe)
j → χ

(τe)
j ,

Heff(Bs → τe) : ξ
(d)
i → ξ

(s)
i , χ

(µe)
j → χ

(τe)
j ,

Heff(Bd → τµ) : χ
(µe)
j → χ

(τµ)
j ,

Heff(Bs → τµ) : ξ
(d)
i → ξ

(s)
i , χ

(µe)
j → χ

(τµ)
j . (8.3)
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The effective Hamiltonians for the B̄d,s decays are simply given by the hermitian conjugates

of the corresponding expressions in (8.2) and (8.3).

In calculating the corresponding branching ratios, it is important to observe that while

in KL → µe the decaying meson, KL ≃ (s̄d + d̄s)/
√

2, is a mixture of flavour eigenstates,

the decaying Bd,s mesons are instead flavour eigenstates (e. g. Bd = b̄d). For this reason,

in Br(KL → µe) the two conjugate contributions of Heff combine together, while in Bd,s

decays only one contribution enters, with the conjugate one describing B̄d,s decays. With

this consideration in mind, starting from Br(KL → µe) in (7.7), one can straightforwardly

find the following expressions

Br(B̄d → µe) = Br(Bd → µe) = Br(Bd → µ+e−) + Br(Bd → µ−e+)

=
G2

F M4
WL

512π4|Vub|2
v4

f4

τ(Bd)

τ(B+)
Br(B+ → µ+νµ) (8.4)

·
[∣

∣

∣

∣

∑

i,j=2,3

ξ
(d)
i χ

(µe)
j R(zi, z1, y1, yj)

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∑

i,j=2,3

ξ
(d)
i χ

(µe)∗
j R(zi, z1, y1, yj)

∣

∣

∣

∣

2]

,

Br(B̄s → µe) = Br(Bs → µe) = Br(Bs → µ+e−) + Br(Bs → µ−e+)

=
G2

F M4
WL

512π4|Vub|2
v4

f4

τ(Bs)

τ(B+)

MBs

MBd

F 2
Bs

F 2
Bd

Br(B+ → µ+νµ) (8.5)

·
[∣

∣

∣

∣

∑

i,j=2,3

ξ
(s)
i χ

(µe)
j R(zi, z1, y1, yj)

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∑

i,j=2,3

ξ
(s)
i χ

(µe)∗
j R(zi, z1, y1, yj)

∣

∣

∣

∣

2]

,

Br(B̄d → τe) = Br(Bd → τe) = Br(Bd → τ+e−) + Br(Bd → τ−e+)

=
G2

F M4
WL

512π4|Vub|2
v4

f4

τ(Bd)

τ(B+)
Br(B+ → τ+ντ ) (8.6)

·
[∣

∣

∣

∣

∑

i,j=2,3

ξ
(d)
i χ

(τe)
j R(zi, z1, y1, yj)

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∑

i,j=2,3

ξ
(d)
i χ

(τe)∗
j R(zi, z1, y1, yj)

∣

∣

∣

∣

2]

,

Br(B̄s → τe) = Br(Bs → τe) = Br(Bs → τ+e−) + Br(Bs → τ−e+)

=
G2

F M4
WL

512π4|Vub|2
v4

f4

τ(Bs)

τ(B+)

MBs

MBd

F 2
Bs

F 2
Bd

Br(B+ → τ+ντ ) (8.7)

·
[∣

∣

∣

∣

∑

i,j=2,3

ξ
(s)
i χ

(τe)
j R(zi, z1, y1, yj)

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∑

i,j=2,3

ξ
(s)
i χ

(τe)∗
j R(zi, z1, y1, yj)

∣

∣

∣

∣

2]

,

Br(B̄d → τµ) = Br(Bd → τµ) = Br(Bd → τ+µ−) + Br(Bd → τ−µ+)

=
G2

F M4
WL

512π4|Vub|2
v4

f4

τ(Bd)

τ(B+)
Br(B+ → τ+ντ ) (8.8)

·
[∣

∣

∣

∣

∑

i,j=2,3

ξ
(d)
i χ

(τµ)
j R(zi, z1, y1, yj)

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∑

i,j=2,3

ξ
(d)
i χ

(τµ)∗
j R(zi, z1, y1, yj)

∣

∣

∣

∣

2]

,

Br(B̄s → τµ) = Br(Bs → τµ) = Br(Bs → τ+µ−) + Br(Bs → τ−µ+)

=
G2

F M4
WL

512π4|Vub|2
v4

f4

τ(Bs)

τ(B+)

MBs

MBd

F 2
Bs

F 2
Bd

Br(B+ → τ+ντ ) (8.9)
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·
[∣

∣

∣

∣

∑

i,j=2,3

ξ
(s)
i χ

(τµ)
j R(zi, z1, y1, yj)

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∑

i,j=2,3

ξ
(s)
i χ

(τµ)∗
j R(zi, z1, y1, yj)

∣

∣

∣

∣

2]

.

Analogously to Br(KL → µe), we have chosen to normalize the branching ratios in question

introducing the branching ratio of a B+ leptonic decay. This normalization will become

helpful once Br(B+ → µ+νµ) and Br(B+ → τ+ντ ) are experimentally measured with

sufficient accuracy. Currently the measurements for Br(B+ → τ+ντ ) read

Br(B+ → τ+ντ ) =

{

(

1.79+0.56+0.39
−0.49−0.46

)

· 10−4 [57] ,
(

0.88+0.68+0.11
−0.67−0.11

)

· 10−4 [58] ,
(8.10)

while the experimental upper bound on Br(B+ → µ+νµ) is given by [59]

Br(B+ → µ+νµ) < 6.6 · 10−6 (90% C.L.) . (8.11)

Therefore, in our numerical analysis in section 12 we will use the central values of the

theoretical predictions for these decays, given by

Br(B+ → µ+νµ) =
G2

F

8π
|Vub|2F 2

Bd
MBd

m2
µτ(B+) = (3.8 ± 1.1) · 10−7 , (8.12)

Br(B+ → τ+ντ ) =
G2

F

8π
|Vub|2F 2

Bd
MBd

m2
ττ(B+) = (1.1 ± 0.3) · 10−4 , (8.13)

where the relevant input parameters are collected in table 1 of section 12.

9. τ−
→ e−µ+e− and τ−

→ µ−e+µ−

These two decays are of ∆L = 2 type and are very strongly suppressed in the SM. In the

LHT model they proceed through the box diagrams in figure 6.

The effective Hamiltonians for these decays can be obtained from ∆B = 2 processes,

that is from (3.11) of [7]. In the case of τ− → e−µ+e− we find

Heff =
G2

F

16π2
M2

WL

v2

f2

∑

i,j

χ
(τe)
i χ

(µe)
j FH(yi, yj)(ēτ)V −A(ēµ)V −A (9.1)

with the function FH given in (7.4). The additional factor 4 relative to (3.11) of [7] results

from the different flavour structure of the operator involved and the two identical particles

in the final state.

The corresponding effective Hamiltonian for τ− → µ−e+µ− is obtained by simply

exchanging e and µ, with χ
(eµ)
j = χ

(µe)
j

∗
.

The relevant branching ratios can be found by comparing these two decays to the tree

level decay τ− → ντe
−ν̄e, for which the effective Hamiltonian reads

Heff =
GF√

2
(ν̄ττ)V −A(ēνe)V −A , (9.2)

and yields the decay rate

Γ(τ− → ντe
−ν̄e) =

G2
F m5

τ

192π3
. (9.3)
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Figure 6: Diagrams contributing to τ− → e−µ+e− in the LHT model.

For τ− → e−µ+e− we find then

Br(τ− → e−µ+e−) =
m5

τττ

192π3

(

G2
F M2

WL

16π2

)2
v4

f4

∣

∣

∣

∣

∣

∣

∑

i,j

χ
(τe)
i χ

(µe)
j FH(yi, yj)

∣

∣

∣

∣

∣

∣

2

, (9.4)

where we neglected mµ,e with respect to mτ . We have included the factor 1/2 to take into

account the presence of two identical fermions in the final state.

The branching ratio for τ− → µ−e+µ− is obtained from (9.4) by interchanging µ ↔ e.

10. τ−
→ µ−e+e− and τ−

→ e−µ+µ−

These decays have two types of contributions. First of all they proceed as in τ− → µ−µ+µ−

and τ− → e−e+e− through ∆L = 1 penguin and box diagrams. As this time there are

no identical particles in the final state, the effective Hamiltonians for these contributions

can be directly obtained from the decay B → Xsℓ
+ℓ−. Let us derive explicitly the effec-

tive Hamiltonian for τ− → µ−e+e−. The generalization to τ− → e−µ+µ− will then be

automatic.

As the QCD corrections are not involved now, only three operators originating in

magnetic photon penguins, Z0-penguins, standard photon penguins and the relevant box

diagrams have to be considered. Keeping the notation from B → Xsµ
+µ− but translating

the quark flavours into lepton flavours these operators are

Q7 =
e

8π2
mτ µ̄σαβ(1 + γ5)τFαβ , (10.1)

that enters, of course with different external states, also the µ → eγ decay, and

Q9 = (µ̄τ)V −A(ēe)V , Q10 = (µ̄τ)V −A(ēe)A . (10.2)

The effective Hamiltonian is then given by

Heff(τ− → µ−e+e−) = −GF√
2

[Cτµ
7 Q7 + Cτµ

9 Q9 + Cτµ
10 Q10] . (10.3)

The Wilson coefficient for the operator Q7 can easily be found from section 3 of the

present paper and section 7 of [8]. We find

Cτµ
7 = −1

2
D̄′ τµ

odd , (10.4)
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Figure 7: Diagrams of ∆L = 2 type contributing to τ− → µ−e+e− in the LHT model.

with D̄′ τµ
odd obtained from (3.19) by replacing (µe) with (τµ).

The Wilson coefficients of the operators Q9 and Q10 receive not only contributions from

∆L = 1 γ-penguin, Z0-penguin and box diagrams, but also from ∆L = 2 box diagrams,

as in section 9. For Cτµ
9 and Cτµ

10 we can then write

Cτµ
9 =

α

2π
C̃τµ

9 , Cτµ
10 =

α

2π
C̃τµ

10 , (10.5)

C̃τµ
9 =

Ȳ τµ
e,odd

sin2 θW
− 4Z̄µe

odd − ∆τµ , C̃τµ
10 = −

Ȳ τµ
e,odd

sin2 θW
+ ∆τµ , (10.6)

with the functions Ȳ τµ
e,odd and Z̄τµ

odd obtained from (5.5) and (5.6) by replacing (µe) by (τµ).

∆τµ represents the additional ∆L = 2 contribution which is not present in the case of

b → sℓ+ℓ− and will be explained below. As there are no light fermions in the T-odd sector,

the mass independent term present in C9 in the case of b → sℓ+ℓ− in (X.5) of [53] is absent

here. Effectively this corresponds to setting η = 1 in the latter equation and of course

removing QCD corrections.

As already mentioned, also the ∆L = 2 diagrams shown in figure 7 contribute to this

decay. The corresponding effective Hamiltonian can be obtained from (9.1) through the

obvious replacements of local operators, removing the symmetry factor 2 and the following

change in the mixing factors:

χ
(τe)
i χ

(µe)
j −→ χ

(τe)
i χ

(µe)
j

∗
, (10.7)

so that we find

∆τµ =
2π

α

GF

32π2

√
2M2

WL

v2

f2

∑

i,j

χ
(τe)
i χ

(µe)
j

∗
FH(yi, yj)

=
1

16 sin2 θW

v2

f2

∑

i,j

χ
(τe)
i χ

(µe)
j

∗
FH(yi, yj) . (10.8)

Effectively the presence of the diagrams in figure 7 introduces corrections to the Wilson

coefficients C̃9 and C̃10 in (10.6). As the relevant operator has the structure (V − A) ⊗
(V − A), the shifts in C̃9 and C̃10 are equal up to an overall sign.

Finally, introducing

ŝ =
(pe+ + pe−)2

m2
τ

, Rτµ(ŝ) =
d
dŝΓ(τ− → µ−e+e−)

Γ(τ− → µ−ν̄µντ )
(10.9)
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and neglecting me with respect to mτ we find for the differential decay rate Rτµ(ŝ)

Rτµ(ŝ) =
α2

4π2
(1 − ŝ)2

[

(1 + 2ŝ)
(

|C̃τµ
9 |2 + |C̃τµ

10 |2
)

+4

(

1 +
2

ŝ

)

|Cτµ
7 |2 + 12Re

(

Cτµ
7 (C̃τµ

9 )
∗
)

]

. (10.10)

The branching ratio is then given as follows:

Br(τ− → µ−e+e−) = Br(τ− → µ−ν̄µντ )

∫ 1

4m2
e/m2

τ

Rτµ(ŝ) dŝ . (10.11)

The branching ratio for τ− → e−µ+µ− can easily be obtained from the above expres-

sions by interchanging µ ↔ e, where χ
(eµ)
i = χ

(µe)
i

∗
.

For quasi-degenerate mirror leptons the ∆L = 1 part clearly dominates as the GIM-

like suppression acts only on one mirror lepton propagator, whereas it acts twice in the

∆L = 2 case. Moreover, in the latter case the effective Hamiltonian is quartic in the VHℓ

couplings, whereas it is to a very good approximation quadratic in the case of ∆L = 1.

As these factors are all smaller than 1, quite generally ∆L = 2 contributions will then be

additionally suppressed by the mixing matrix elements. Consequently, the ∆L = 1 part

is expected to dominate and the shift ∆τµ can be neglected. On the other hand, for very

special structures of the VHℓ matrix, the double GIM suppression of ∆L = 2 with respect

to ∆L = 1 contributions could be compensated by the VHℓ factors. Therefore it is safer to

use the more general expressions given above.

11. (g − 2)µ in the LHT Model

The anomalous magnetic moment of the muon aµ = (g−2)µ/2 provides an excellent test for

physics beyond the SM and has been measured very precisely at the E821 experiment [60]

in Brookhaven. The latest result of the (g − 2) Collaboration of E821 reads

aexp
µ = (11659208.0 ± 6.3) · 10−10 , (11.1)

whereas the SM prediction is given by [61]

aSM
µ = aQED

µ + aew
µ + ahad

µ = (11659180.4 ± 5.1) · 10−10 . (11.2)

While the QED and electroweak contributions to aSM
µ are known very precisely [62, 63], the

theoretical uncertainty is dominated by the hadronic vacuum polarization and light-by-light

contributions. These contributions have been evaluated in [61, 64 – 66].

The anomalous magnetic moment aµ can be extracted from the photon-muon vertex

function Γµ(p′, p)

ū(p′)Γµ(p′, p)u(p) = ū(p′)
[

γµFV (q2) + (p + p′)µFM (q2)
]

u(p) , (11.3)

where the anomalous magnetic moment of the muon aµ can be read off as

aµ = −2mµFM (0) . (11.4)
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Figure 8: Diagrams contributing to (g − 2)µ in the LHT model.

The diagrams which yield new contributions to aµ in the LHT model are shown in

figure 8. They either have a heavy neutral gauge boson (ZH or AH) and two heavy charged

leptons ℓi
H (i = 1, 2, 3) or two heavy charged gauge bosons (W±

H ) and one heavy neutrino

νi
H (i = 1, 2, 3) running in the loop.

Calculating the diagrams in figure 8 and using the Feynman rules given in [8], the

contributions of the new particles for each generation i = 1, 2, 3 are found to be:

[aµ]iX=AH ,ZH
=

1

2π2

m2
µ

M2
X

∣

∣Ci
X

∣

∣

2
ri

{(

5

6
− 5

2
ri + r2

i +
(

r3
i − 3r2

i + 2ri

)

log
ri − 1

ri

)

+
mℓ

Hi
2

2M2
X

(

5

6
+

3

2
ri + r2

i +
(

r2
i + r3

i

)

log
ri − 1

ri

)}

, (11.5)

[aµ]iX=WH
= − 1

4π2

m2
µ

M2
X

∣

∣Ci
X

∣

∣

2
ri

{

−2

(

5

6
− 3

2
bi + b2

i +
(

b2
i − b3

i

)

log
bi + 1

bi

)

− mℓ
Hi

2

M2
X

(

5

6
+

5

2
bi + b2

i −
(

2bi + 3b2
i + b3

i

)

log
bi + 1

bi

)

}

, (11.6)

where

ri =

(

1 − mℓ
Hi

2

M2
X

)−1

, bi =
mℓ

Hi
2

M2
X

ri (11.7)

and

Ci
AH

=
g′

20
V iµ

Hℓ , Ci
ZH

=
g

4
V iµ

Hℓ , Ci
WH

=
g

2
√

2
V iµ

Hℓ . (11.8)

The parameter mℓ
Hi in (11.5) and (11.6) denotes the mass of the mirror leptons while MX

is the mass of the heavy gauge bosons. We expanded our results in the small parameter

mµ/MX . Our results in (11.5) and (11.6) for the muon anomalous magnetic moment are

confirmed by the formulae in [67] for general couplings.

Replacing the parameters ri and bi by the more convenient parameter yi, defined
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me = 0.5110MeV τ(Bd)/τ(B+) = 0.934(7)

mµ = 105.66MeV τ(Bs) = 1.466(59) ps

mτ = 1.7770(3)GeV τ(B+) = 1.638(11) ps

ττ = 290.6(10) · 10−3 ps MBd
= 5.2794(5)GeV

MW = 80.425(38)GeV MBs = 5.3675(18)GeV [37]

α = 1/137 |Vub| = 3.68(14) · 10−3 [69]

GF = 1.16637(1) · 10−5 GeV−2 F8/Fπ = 1.28 (ChPT)

sin2 θW = 0.23122(15) [37] F0/Fπ = 1.18(4)

FBd
= 189(27)MeV θ8 = −22.2(18)◦

FBs = 230(30)MeV [68] θ0 = −8.7(21)◦ [70]

Table 1: Values of the experimental and theoretical quantities used as input parameters.

in (3.13), leads us to the following expressions

[aµ]ZH
=

√
2GF

32π2

v2

f2
m2

µ

3
∑

i=1

∣

∣

∣
V iµ

Hℓ

∣

∣

∣

2
L1(yi) , (11.9)

[aµ]AH
=

√
2GF

160π2

v2

f2
m2

µ

3
∑

i=1

∣

∣

∣V
iµ
Hℓ

∣

∣

∣

2
L1(y

′
i) , (11.10)

[aµ]WH
=

−
√

2GF

32π2

v2

f2
m2

µ

3
∑

i=1

∣

∣

∣V
iµ
Hℓ

∣

∣

∣

2
L2(yi) , (11.11)

where the functions L1 and L2 are given in appendix B.

Our final result for aµ in the LHT model therefore is

aµ = [aµ]SM +

√
2GF

32π2

v2

f2
m2

µ

3
∑

i=1

∣

∣

∣V
iµ
Hℓ

∣

∣

∣

2
[

L1(yi) − L2(yi) +
1

5
L1(y

′
i)

]

. (11.12)

While we disagree with [20], we confirm the result of [21] except that according to

us the factors (VHν)
∗
2i(VHν)2i and (VHℓ)

∗
2i(VHℓ)2i in equations (3.22)–(3.24) of that paper

should be replaced by |V iµ
Hℓ|2.

12. Numerical analysis

12.1 Preliminaries

In contrast to rare meson decays, the number of flavour violating decays in the lepton

sector, for which useful constraints exist, is rather limited. Basically only the constraints

on Br(µ → eγ), Br(µ− → e−e+e−), R(µTi → eTi) and Br(KL → µe) can be mentioned

here. The situation may change significantly in the coming years and the next decade

through the experiments briefly discussed in the introduction.

In this section we want to analyze numerically various branching ratios that we have

calculated in sections 3–11. In section 13 we will extend our numerical analysis by studying
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various ratios of branching ratios and comparing them with those found in the MSSM. Our

purpose is not to present a very detailed numerical analysis of all decays, but rather to

concentrate on the most interesting ones from the present perspective and indicate rough

upper bounds on all calculated branching ratios within the LHT model. To this end we

will first set f = 1TeV and consider three benchmark scenarios for the remaining LHT

parameters in (2.12), as discussed below.

In table 1 we collect the values of the input parameters that enter our numerical

analysis. In order to simplify the analysis, we will set all input parameters to their central

values. As all parameters, except for the decay constants FBd,s
and the η−η′ mixing angles,

are known with quite high precision, including the error ranges in the analysis would amount

only to percent effects in the observables considered, which is clearly beyond the scope of

our analysis.

12.2 Benchmark scenarios

We will consider the following three scenarios:

Scenario A (red). In this scenario we will choose

VHℓ = V †
PMNS , (12.1)

so that VHν ≡ 1, and mirror leptons have no impact on flavour violating observables in the

neutrino sector, such as neutrino oscillations. In particular we set the PMNS parameters

to [36]

sin θ12 =
√

0.300 , sin θ13 =
√

0.030 , sin θ23 =
1√
2

, δ13 = 65◦ , (12.2)

which is consistent with the experimental constraints on the PMNS matrix [37]. As no

constraints on the PMNS phases exist, we have taken δ13 to be equal to the CKM phase

and set the two Majorana phases to zero.

Furthermore, we take the mirror lepton masses to lie in the range

300GeV ≤ mℓ
Hi ≤ 1.5TeV , (i = 1, 2, 3) . (12.3)

Scenario B (green). Here, we take

VHℓ = VCKM , (12.4)

so that [69]

θℓ
12 = 13◦ , θℓ

13 = 0.25◦ , θℓ
23 = 2.4◦ , (12.5)

δℓ
12 = 0 , δℓ

13 = 65◦ , δℓ
23 = 0 , (12.6)

and the mirror lepton masses in the range (12.3).
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Scenario C (blue). Here we perform a general scan over the whole parameter space,

with the only restriction being the range (12.3) for mirror lepton masses.

At a certain stage we will investigate the dependence on mass splittings in the mirror

lepton spectrum.

In the case of KL → µe, Bd,s → µe and similar decays of sections 7 and 8, the

parameters of the mirror quark sector enter and the constraints from K and B physics,

analyzed in [7, 8], have to be taken into account.

12.3 µ → eγ, µ−
→ e−e+e− and µ − e conversion

In figure 9 we show the correlation between µ → eγ and µ− → e−e+e− in the scenarios in

question together with the experimental bounds on these decays. We observe:

• In Scenario A the great majority of points is outside the allowed range, implying that

the VHℓ matrix must be much more hierarchical than VPMNS in order to satisfy the

present upper bounds on µ → eγ and µ− → e−e+e−.

• Also in Scenario B most of the points violate the current experimental bounds, al-

though VCKM is much more hierarchical than VPMNS. The reason is that the CKM

hierarchy s13 ≪ s23 ≪ s12 implies very small effects in transitions between the third

and the first generation, like τ → eγ, while allowing relatively large effects in the

µ → e transitions. Thus in order to satisfy the experimental constraints on µ → eγ

and µ− → e−e+e− a very different hierarchy of the VHℓ matrix is required, unless

the mirror lepton masses are quasi-degenerate.

• In Scenario C there are more possibilities, but also here a strong correlation between

µ → eγ and µ− → e−e+e− is observed. This is easy to understand, as both decays

probe dominantly the combinations of VHℓ elements χ
(µe)
i .

• For Scenario C, we also show the contributions to µ− → e−e+e− from D̄′µe
odd, Z̄µe

odd

and Ȳ µe
e,odd separately. We observe that the dominant contributions come from the

functions Z̄µe
odd and above all Ȳ µe

e,odd, while the contribution of the operator Q7, given

by D̄′µe
odd, is by roughly two orders of magnitude smaller and thus fully negligible.

This should be contrasted with the case of the MSSM where the dipole operator is

dominant. We will return to the consequences of this finding in the next section.

• We emphasize that the strong correlation between µ → eγ and µ− → e−e+e− in the

LHT model is not a common feature of all extensions of the SM, in which the structure

of µ− → e−e+e− is generally much more complicated than in the LHT model. It is

clear from figure 9 that an improved upper bound on µ → eγ by MEG in 2007 and in

particular its discovery will provide important information on µ− → e−e+e− within

the model in question.

Next, in figure 10 we show the correlation between the µ − e conversion rate in 48
22Ti

and Br(µ → eγ), after imposing the existing constraints on µ → eγ and µ− → e−e+e−.

We observe that this correlation is much weaker than the one between µ → eγ and µ− →
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Figure 9: Correlation between µ → eγ and µ− → e−e+e− in the scenarios of section 12.2. In the

right plot of Scenario C we show the contributions to µ− → e−e+e− from D̄′µe
odd (purple, lowermost),

Z̄µe
odd (orange, middle) and Ȳ µe

e,odd (light-blue, uppermost) separately. The shaded area represents

the experimental constraints.

e−e+e−. Furthermore, we find that the µ − e conversion rate in Ti is likely to be found

close to the current experimental upper bound, and that in some regions of the parameter

space the latter bound is even the most constraining one.

We also show in figure 11 the mass splitting ∆m12 = |mℓ
H2 − mℓ

H1| as a function of

mℓ
H1, after imposing the existing constraints on µ → eγ and µ− → e−e+e−. We observe

that for the scenarios A and B considered here, the first two generations of mirror leptons
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Figure 10: µ− e conversion rate in 48
22Ti as a function of Br(µ → eγ), after imposing the existing

constraints on µ → eγ and µ− → e−e+e−. The shaded area represents the current experimental

upper bound on R(µTi → eTi).
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Figure 11: Mirror lepton mass splitting ∆m12 = |mℓ
H2−mℓ

H1| as a function of mℓ
H1, after imposing

the existing constraints on µ → eγ and µ− → e−e+e−. The dark points violate the constraint on

µ − e conversion in Ti, while the light points fulfil also this constraint.

have to be quasi-degenerate in order to satisfy the experimental constraints. While in the

case of Scenario A, ∆m12
<∼ 40GeV is required, ∆m12

<∼ 60GeV is sufficient to fulfil the

constraints in Scenario B, provided the mirror lepton masses are relatively small. Generally

we find that the allowed mass splittings are larger for smaller values of the mirror lepton

masses. This is due to the fact that the functions Juū and Jdd̄, as defined in (4.7) and (4.8),

are monotonously increasing, making thus a stronger GIM suppression necessary in the

case of large masses. Finally we have studied the impact of the experimental bound on

R(µTi → eTi) on the allowed mass splittings. We observe that in particular for large values

of the mirror lepton masses, µ− e conversion turns out to be even more constraining than

µ → eγ and µ− → e−e+e−.
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Figure 12: Correlation between Br(τ → eγ) and Br(τ → µγ).
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Figure 13: Br(τ → µπ) (dark-blue) and Br(τ → µη) (light-blue) as functions of Br(τ → µγ).

12.4 τ → µγ and τ → eγ

In figure 12 we show the correlation between Br(τ → µγ) and Br(τ → eγ) in Scenario

C, imposing the experimental bounds on µ → eγ and µ− → e−e+e−. We observe that

they both can be individually as high as ∼ 8 · 10−10, but the highest values of Br(τ → µγ)

correspond generally to much lower values of Br(τ → eγ) and vice versa. Still simultaneous

values of both branching ratios as high as 2 · 10−10 are possible.

12.5 τ → µπ, µη, µη′ and τ → µγ

In figure 13 we show Br(τ → µπ) and Br(τ → µη) as functions of Br(τ → µγ), imposing
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Figure 14: Correlation between Br(µ → eγ) and Br(KL → µe) for fixed mirror quark parameters

(mq
H1 ≃ 332 GeV, mq

H2 ≃ 739 GeV, mq
H3 ≃ 819 GeV, θd

12 ≃ 95◦, θd
13 ≃ 229◦, θd

23 ≃ 205◦, δd
12 =

0, δd
13 ≃ 239◦, δd

23 = 0).

the constraints from µ → eγ and µ− → e−e+e−. We find that Br(τ → µπ) can reach

values as high as 2 · 10−9 and Br(τ → µη) can be as large as 7 · 10−10, which is still by

more than one order of magnitude below the recent bounds from Belle and BaBar. We do

not show Br(τ → µη′) as it is very similar to Br(τ → µη).

Completely analogous correlations can be found also for the corresponding decays

τ → eπ, eη, eη′ and τ → eγ. Indeed, this symmetry between τ → µ and τ → e systems

turns out to be a general feature of the LHT model, that can be found in all decays

considered in the present paper. We will return to this issue in section 13.

An immediate consequence of these correlations is that, as in the case of τ → µγ and

τ → eγ, the highest values for τ → µπ are possible if τ → eπ is relatively small, and vice

versa. Still the corresponding branching ratios can be simultaneously enhanced to 3 ·10−10.

Analogous statements apply to τ → µ(e)η and τ → µ(e)η′.

12.6 KL → µe and KL → π0µe

In figure 14 we show the dependence of Br(KL → µe) on Br(µ → eγ). To this end we

have chosen one of the sets of mirror quark parameters for which the most spectacular

effects both in Sψφ and the K → πνν̄ decays have been found [8]. We observe that for the

parameters used here, Br(KL → µe) is still by two orders of magnitude below the current

experimental upper bound. However, one can see in table 2 that Br(KL → µe) could also

be found only one order of magnitude below the current bound. This means that large

effects in the K → πνν̄ decays do not necessarily imply also large effects in KL → µe.

The effects in KL → π0µe are even by roughly two orders of magnitude smaller, as

can also be seen in table 2, so that, from the point of view of the LHT model, this decay

will not be observed in the foreseeable future.
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12.7 Upper bounds

In table 2 we show the present LHT upper bounds on all branching ratios considered

in the present paper, together with the corresponding experimental bounds. In order to

see the strong dependence on the scale f , we give these bounds both for f = 1000GeV

and f = 500GeV with the range (12.3) for the mirror lepton masses in both cases. We

observe that the upper bounds on τ decays, except for τ− → µ−e+µ− and τ− → e−µ+e−,

increase by almost two orders of magnitude, when lowering the scale f down to 500GeV,

so that these decays could be found close to their current experimental upper bounds. In

particular, the most recent upper bounds on τ → µπ, eπ [33] could be violated by roughly

a factor 5, as can be seen from table 2 of the first version of the present paper. Therefore,

in deriving the LHT upper bounds for f = 500GeV, we have taken into account also the

latter bounds. On the other hand, the bounds on τ− → µ−e+µ− and τ− → e−µ+e− are

quite independent of the value of f . This striking difference is due to the fact that the

present lepton constraints are only effective for µ → e transitions. We also note that the

upper bounds on some K and Bd,s decays, namely KL → µe, KL → π0µe and Bd,s → µe,

result to be lower when the NP scale is decreased to f = 500GeV. The origin of this

behaviour is that lowering f the strongest constraints, mainly on K and B systems, start

to exclude some range of parameters and, consequently, to forbid very large values for the

branching ratios in question.

We have also investigated the effect of imposing in addition the constraint R(µTi →
eTi) < 5·10−12, which we choose slightly above the experimental value 4.3·10−12 in order to

account for the theoretical uncertainties involved. We find that all upper bounds collected

in table 2 depend only weakly on that constraint. This finding justifies that we did not

take into account this bound in our numerical analysis so far, as it has only a minor impact

on the observables discussed.

We would like to stress that the bounds in table 2 should only be considered as rough

upper bounds. They have been obtained from scattering over the allowed parameter space

of the model. In particular, no confidence level can be assigned to them. The same applies

to the ranges given in table 3 for the LHT model.

12.8 (g − 2)µ

Finally, we have analyzed (g − 2)µ in the LHT model. Even for the scale f being as low as

500GeV, we find

aLHT
µ < 1.2 · 10−10 , (12.7)

to be compared with the experimental value in (11.1). We observe that the effect of mirror

fermions is by roughly a factor 5 below the current experimental uncertainty, implying that

the possible discrepancy between the SM value and the data cannot be solved in the model

considered here.
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decay f = 1000GeV f = 500GeV exp. upper bound

µ → eγ 1.2 · 10−11 (1 · 10−11) 1.2 · 10−11 (1 · 10−11) 1.2 · 10−11 [17]

µ− → e−e+e− 1.0 · 10−12 (1 · 10−12) 1.0 · 10−12 (1 · 10−12) 1.0 · 10−12 [42]

µTi → eTi 2 · 10−10 (5 · 10−12) 4 · 10−11 (5 · 10−12) 4.3 · 10−12 [29]

τ → eγ 8 · 10−10 (7 · 10−10) 1 · 10−8 (1 · 10−8) 9.4 · 10−8 [33]

τ → µγ 8 · 10−10 (8 · 10−10) 2 · 10−8 (1 · 10−8) 1.6 · 10−8 [33]

τ− → e−e+e− 7 · 10−10 (6 · 10−10) 2 · 10−8 (2 · 10−8) 2.0 · 10−7 [71]

τ− → µ−µ+µ− 7 · 10−10 (6 · 10−10) 3 · 10−8 (3 · 10−8) 1.9 · 10−7 [71]

τ− → e−µ+µ− 5 · 10−10 (5 · 10−10) 2 · 10−8 (2 · 10−8) 2.0 · 10−7 [72]

τ− → µ−e+e− 5 · 10−10 (5 · 10−10) 2 · 10−8 (2 · 10−8) 1.9 · 10−7 [72]

τ− → µ−e+µ− 5 · 10−14 (3 · 10−14) 2 · 10−14 (2 · 10−14) 1.3 · 10−7 [71]

τ− → e−µ+e− 5 · 10−14 (3 · 10−14) 2 · 10−14 (2 · 10−14) 1.1 · 10−7 [71]

τ → µπ 2 · 10−9 (2 · 10−9) 5.8 · 10−8 (5.8 · 10−8) 5.8 · 10−8 [33]

τ → eπ 2 · 10−9 (2 · 10−9) 4.4 · 10−8 (4.4 · 10−8) 4.4 · 10−8 [33]

τ → µη 6 · 10−10 (6 · 10−10) 2 · 10−8 (2 · 10−8) 5.1 · 10−8 [33]

τ → eη 6 · 10−10 (6 · 10−10) 2 · 10−8 (2 · 10−8) 4.5 · 10−8 [33]

τ → µη′ 7 · 10−10 (7 · 10−10) 3 · 10−8 (3 · 10−8) 5.3 · 10−8 [33]

τ → eη′ 7 · 10−10 (7 · 10−10) 3 · 10−8 (3 · 10−8) 9.0 · 10−8 [33]

KL → µe 4 · 10−13 (2 · 10−13) 3 · 10−14 (3 · 10−14) 4.7 · 10−12 [50]

KL → π0µe 4 · 10−15 (2 · 10−15) 5 · 10−16 (5 · 10−16) 6.2 · 10−9 [73]

Bd → µe 5 · 10−16 (2 · 10−16) 9 · 10−17 (9 · 10−17) 1.7 · 10−7 [74]

Bs → µe 5 · 10−15 (2 · 10−15) 9 · 10−16 (9 · 10−16) 6.1 · 10−6 [75]

Bd → τe 3 · 10−11 (2 · 10−11) 2 · 10−10 (2 · 10−10) 1.1 · 10−4 [76]

Bs → τe 2 · 10−10 (2 · 10−10) 2 · 10−9 (2 · 10−9) —

Bd → τµ 3 · 10−11 (3 · 10−11) 3 · 10−10 (3 · 10−10) 3.8 · 10−5 [76]

Bs → τµ 2 · 10−10 (2 · 10−10) 3 · 10−9 (3 · 10−9) —

Table 2: Upper bounds on LFV decay branching ratios in the LHT model, for two different values

of the scale f , after imposing the constraints on µ → eγ and µ− → e−e+e−. The numbers given

in brackets are obtained after imposing the additional constraint R(µTi → eTi) < 5 · 10−12. For

f = 500 GeV, also the bounds on τ → µπ, eπ have been included. The current experimental upper

bounds are also given.

13. Patterns of correlations and comparison with supersymmetry

13.1 Preliminaries

We have seen in the previous section that the branching ratios for several charged LFV

processes could reach within the LHT model the level accessible to experiments performed

in this decade. However, in view of many parameters involved, it is desirable to look for

certain correlations between various branching ratios that are less parameter dependent

than individual branching ratios, and whose pattern could provide a clear signature of the

LHT model.

In the case of CMFV in the quark sector useful correlations have been summarized
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at length in [16, 77]. In the case of LFV, in a very interesting paper [23], Ellis et al.

noticed a number of correlations characteristic for the MSSM, in the absence of significant

Higgs contributions. These correlations have also been analyzed recently in [24 – 26]. In

particular, in [24, 26] modifications of them in the presence of significant Higgs contributions

have been pointed out.

The main goal of this section is a brief review of the correlations discussed in [23 – 26]

and the comparison of MSSM results with the ones of the LHT model. We will see that

indeed the correlations in question could allow for a transparent distinction between MSSM

and LHT, which is difficult in high energy collider processes [78].

13.2 Correlations in the MSSM

13.2.1 Dipole operator dominance

In the absence of significant Higgs boson contributions, the LFV processes considered in

our paper are dominated in the MSSM by the dipole operator with very small contributions

from box and Z-penguin diagrams. In this case one finds the approximate general formulae

[23 – 26]

Br(ℓ−i → ℓ−j ℓ+
j ℓ−j )

Br(ℓi → ℓjγ)
≃ α

3π

(

log
m2

ℓi

m2
ℓj

− 2.7

)

, (13.1)

Br(ℓ−i → ℓ−j ℓ+
k ℓ−k )

Br(ℓi → ℓjγ)
≃ α

3π

(

log
m2

ℓi

m2
ℓk

− 2.7

)

. (13.2)

Consequently one finds

Br(µ− → e−e+e−)

Br(µ → eγ)
≃ α

3π

(

log
m2

µ

m2
e

− 2.7

)

≃ 1

162
, (13.3)

Br(τ− → e−e+e−)

Br(τ → eγ)
≃ Br(τ− → µ−e+e−)

Br(τ → µγ)
≃ α

3π

(

log
m2

τ

m2
e

− 2.7

)

≃ 1

95
, (13.4)

Br(τ− → µ−µ+µ−)

Br(τ → µγ)
≃ Br(τ− → e−µ+µ−)

Br(τ → eγ)
≃ α

3π

(

log
m2

τ

m2
µ

− 2.7

)

≃ 1

438
, (13.5)

and [26]
Br(τ− → µ−e+e−)

Br(τ− → µ−µ+µ−)
≃ Br(τ− → e−e+e−)

Br(τ− → e−µ+µ−)
≃ 4.6 . (13.6)

Moreover, keeping only the dipole operator contribution in R(µTi → eTi), we find

R(µTi → eTi)

Br(µ → eγ)
≃ 0.7α . (13.7)

One also has
Br(τ → ℓP )

Br(τ → ℓγ)
< O(α) (P = π, η, η′) , (13.8)

where the absence of dipole operator contributions to Br(τ → ℓP ) makes the ratios in (13.8)

significantly smaller than the ones in (13.3)–(13.5).
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13.2.2 Including Higgs contributions: decoupling limit

It should be emphasized that the Higgs contributions become competitive with the gauge

mediated ones, once the Higgs masses are roughly by one order of magnitude smaller

than the sfermion masses and tan β is O(40 − 50). There is a rich literature on Higgs

contributions to LFV within supersymmetry. One of the earlier references is the one by

Babu and Kolda [79]. Here we concentrate on the modifications of the correlations discussed

above in the presence of significant Higgs contributions as analyzed by Paradisi [26], where

further references can be found (see in particular [24]).

In the limit of Higgs decoupling, which is achieved in the MSSM, some of the results

in (13.1)–(13.8) are modified. In particular

Br(τ− → µ−µ+µ−)

Br(τ → µγ)
<∼

2

9
,

Br(τ− → e−µ+µ−)

Br(τ → eγ)
<∼

1

12
(13.9)

can be much larger than in the case of dipole operator dominance, and

Br(τ− → µ−e+e−)

Br(τ− → µ−µ+µ−)
>∼ 0.05 ,

Br(τ− → e−e+e−)

Br(τ− → e−µ+µ−)
>∼ 0.13 (13.10)

can be much smaller. Moreover one finds

Br(τ → ℓη)

Br(τ → ℓγ)
<∼ 1 ,

Br(τ → µη)

Br(τ− → µ−µ+µ−)
≃ 4.5 ,

Br(τ → eη)

Br(τ− → e−µ+µ−)
≃ 12 .

(13.11)

13.3 Correlations in the LHT model

The pattern of correlations in the LHT model differs significantly from the MSSM one

presented above. This is due to the fact that the dipole contributions to the decays

ℓ−i → ℓ−j ℓ+
j ℓ−j and ℓ−i → ℓ−j ℓ+

k ℓ−k can be fully neglected in comparison with Z0-penguin

and box diagram contributions. This is dominantly due to the fact that the neutral gauge

boson (ZH , AH) contributions interfere destructively with the W±
H contributions to the

dipole operator functions D̄′ ij
odd, but constructively in the case of the functions Ȳ ij

k,odd that

summarize the Z0-penguin and box contributions in a gauge independent manner. More-

over, the large tan β enhancement of dipole operators characteristic for the MSSM is absent

here. In this context it is useful to define the ratios

Tij =

∣

∣

∣

∣

∣

Ȳ ij
j,odd

D̄′ ij
odd

∣

∣

∣

∣

∣

2

(13.12)

that are strongly enhanced in the case of the LHT model for almost the entire space

of parameters, as seen in figure 15 for the case of Tµe. Consequently, the logarithmic

enhancement of dipole contributions seen in (5.8), (13.1) and (13.2) is eliminated by the

strong suppression of |D̄′ ij
odd|2 with respect to |Ȳ ij

j,odd|2. Similarly, Cτµ
7 , that is governed by

D̄′ τµ
odd, can be neglected in (10.10), resulting in the absence of large logarithms in the decays

τ− → µ−e+e− and τ− → e−µ+µ−.

We note that the ratios Tij depend on the approximation made for the left-over sin-

gularity, as Ȳ ij
j,odd suffers from this divergence while D̄

′ ij
odd does not. However, we find that
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Figure 15: Tµe as a function of |D̄′µe
odd| for f = 1 TeV.

dropping completely the term proportional to Sodd, which is certainly not a good approx-

imation, amounts to at most 50% changes in the allowed ranges for Tij and consequently

for the correlations discussed below. Therefore we think that these correlations are only

insignificantly affected by this general feature of non-linear sigma models.

These findings make clear that the correlations between various branching ratios in

the LHT model, being unaffected by the logarithms present in (13.1)–(13.5), have a very

different pattern from those found in the MSSM.

It turns out that within an accuracy of 3% one can set D̄′ ij
odd to zero in all decays with

three leptons in the final state. Similarly, the contribution of C̃ij
9 in τ− → µ−e+e− and

τ− → e−µ+µ− can be neglected. Neglecting finally ∆ij in (10.6), which is good to within

20%, allows us to derive simple expressions for various ratios of branching ratios that can

directly be compared with those listed in (13.1)–(13.6).

To this end, we define

aij =
Z̄ij

odd

Ȳ ij
j,odd

, bk
ij =

∣

∣

∣

∣

∣

Ȳ ij
k,odd

Ȳ ij
j,odd

∣

∣

∣

∣

∣

2

, (13.13)

cij = 3 sin4 θW |aij |2 +
1

2
− 2 sin2 θW Re(aij) . (13.14)

We find then

Br(µ− → e−e+e−)

Br(µ → eγ)
≃ 2α

3π

1

sin4 θW
Tµecµe , (13.15)

with analogous expressions for the respective τ → e and τ → µ transitions.
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ratio LHT MSSM (dipole) MSSM (Higgs)

Br(µ−→e−e+e−)
Br(µ→eγ) 0.4. . . 2.5 ∼ 6 · 10−3 ∼ 6 · 10−3

Br(τ−→e−e+e−)
Br(τ→eγ) 0.4. . . 2.3 ∼ 1 · 10−2 ∼ 1 · 10−2

Br(τ−→µ−µ+µ−)
Br(τ→µγ) 0.4. . . 2.3 ∼ 2 · 10−3 0.06 . . . 0.1

Br(τ−→e−µ+µ−)
Br(τ→eγ) 0.3. . . 1.6 ∼ 2 · 10−3 0.02 . . . 0.04

Br(τ−→µ−e+e−)
Br(τ→µγ) 0.3. . . 1.6 ∼ 1 · 10−2 ∼ 1 · 10−2

Br(τ−→e−e+e−)
Br(τ−→e−µ+µ−) 1.3. . . 1.7 ∼ 5 0.3. . . 0.5

Br(τ−→µ−µ+µ−)
Br(τ−→µ−e+e−)

1.2. . . 1.6 ∼ 0.2 5. . . 10

R(µTi→eTi)
Br(µ→eγ) 10−2 . . . 102 ∼ 5 · 10−3 0.08 . . . 0.15

Table 3: Comparison of various ratios of branching ratios in the LHT model and in the MSSM

without and with significant Higgs contributions.

We also find

Br(τ− → e−µ+µ−)

Br(τ → eγ)
≃ α

12π

1

sin4 θW
Tτeb

µ
τe . (13.16)

Br(τ− → µ−e+e−)

Br(τ → µγ)
≃ α

12π

1

sin4 θW
Tτµbe

τµ , (13.17)

Finally, (13.15)–(13.17) imply

Br(τ− → e−e+e−)

Br(τ− → e−µ+µ−)
= 8

cτe

bµ
τe

, (13.18)

Br(τ− → µ−µ+µ−)

Br(τ− → µ−e+e−)
= 8

cτµ

be
τµ

. (13.19)

In what follows we restrict ourselves to f = 1TeV for simplicity. We note that although

the numerical values given below depend slightly on the size of the scale f , the qualitative

picture found and discussed remains true independently of that value.

The ranges for the ratios in question found in the LHT model are compared in table 3

with the corresponding values in the MSSM, both in the case of dipole dominance and

when Higgs contributions are significant.

While the results in table 3 are self-explanatory, let us emphasize four striking differ-

ences between the LHT and MSSM results in the case of small Higgs contributions:

• The ratio (13.15) and the similar ratios for τ → e and τ → µ transitions are O(1) in

the LHT model as opposed to O(α) in the MSSM.

• Also the µ−e conversion rate in nuclei, normalized to Br(µ → eγ), can be significantly

enhanced in the LHT model, with respect to the MSSM without significant Higgs
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contributions. However the distinction in this case is not as clear as in the case of

Br(ℓ−i → ℓ−j ℓ+
j ℓ−j )/Br(ℓi → ℓjγ) due to a destructive interference of the different

contributions to µ − e conversion (see (6.2)). On the other hand, in the case of the

MSSM with significant Higgs contributions, R(µTi → eTi)/Br(µ → eγ) is typically

much larger than α, so that a distinction from the LHT model would be difficult in

that case.

• The “inverted” pattern of the ratios in (13.6) is absent in the LHT model as the

ratios (13.18) and (13.19) are comparable in magnitude. Moreover they are generally

very different from the MSSM values.

• The last finding also implies that while the ratios (13.4) and (13.5) differ roughly by

a factor of 5 in the case of the MSSM, they are comparable in the LHT model, as

seen in (13.16) and (13.17).

In order to exhibit these different patterns in a transparent manner, let us define the

three ratios

R1 =
Br(τ− → e−e+e−)

Br(τ− → µ−µ+µ−)

Br(τ− → µ−e+e−)

Br(τ− → e−µ+µ−)
, (13.20)

R2 =
Br(τ− → e−e+e−)

Br(τ− → µ−µ+µ−)

Br(τ → µγ)

Br(τ → eγ)
, (13.21)

R3 =
Br(τ− → e−µ+µ−)

Br(τ− → µ−e+e−)

Br(τ → µγ)

Br(τ → eγ)
. (13.22)

Note that in the case of a µ ↔ e symmetry, these three ratios should be equal to unity.

This symmetry is clearly very strongly broken in the MSSM, due to the sensitivity of the

ratios in (13.1) and (13.2) to me and mµ, where one finds

R1 ≃ 20 , R2 ≃ 5 , R3 ≃ 0.2 (MSSM) . (13.23)

On the other hand, in the case of the LHT model the absence of large logarithms allows

to satisfy the µ ↔ e symmetry in question within 30%, so that we find

0.8 <∼ R1
<∼ 1.3 , 0.8 <∼ R2

<∼ 1.2 , 0.8 <∼ R3
<∼ 1.2 (LHT) . (13.24)

The comparison of (13.23) with (13.24) offers a very clear distinction between these two

models.

In the presence of significant Higgs contributions the distinction between MSSM and

LHT is less pronounced in τ decays with µ in the final state. However even in this case

both models can be distinguished, as seen in table 3. In particular, the four ratios involving

Br(ℓi → ℓjγ) are still significantly smaller in the MSSM than in the LHT model, and all

decays with electrons in the final state offer excellent means to distinguish these two models.

For the decays τ → ℓP with P = π, η, η′ we find the ranges

1 <∼
Br(τ → ℓπ)

Br(τ → ℓγ)
<∼ 5.5 , 0.4 <∼

Br(τ → ℓη)

Br(τ → ℓγ)
<∼ 2 , 0.3 <∼

Br(τ → ℓη′)

Br(τ → ℓγ)
<∼ 2.8 .

(13.25)
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As seen in (13.8), the ratios obtained in the LHT model are much larger than in su-

persymmetry without significant Higgs contributions. On the other hand, if the Higgs

contributions are dominant, the distinction through the first inequality of (13.11) will be

difficult. However, we also find

0.7 <∼
Br(τ → µη)

Br(τ− → µ−µ+µ−)
<∼ 1.3 , 1.1 <∼

Br(τ → eη)

Br(τ− → e−µ+µ−)
<∼ 1.8 , (13.26)

that could be distinguished from the corresponding results in (13.11).

In summary we have demonstrated that the LHT model can be very transparently

distinguished from the MSSM with the help of LFV processes, while such a distinction is

non-trivial in the case of high energy processes [78]. We consider this result as one of the

most interesting ones of our paper.

14. Conclusions

In the present paper we have extended our analysis of flavour and CP-violating processes

in the LHT model [7, 8] to the lepton sector.

In contrast to rare K and B decays, where the SM contributions play an important

and often the dominant role in the LHT model, the smallness of ordinary neutrino masses

assures that the mirror fermion contributions to LFV processes are by far the dominant

effects. Moreover, the absence of QCD corrections and hadronic matrix elements allows

in most cases to make predictions entirely within perturbation theory. Exceptions are the

decays Bd,s → ℓiℓj that involve the weak decay constants FBd,s
.

The decays and transitions considered by us can be divided into two broad classes:

those which suffer from some sensitivity to the UV completion signalled by the logarithmic

dependence on the cut-off (class A) and those which are free from this dependence (class

B). We have

Class A

µ− → e−e+e− , τ− → e−e+e− , τ− → µ−µ+µ− , µ → e conversion ,

τ− → µ−e+e− , τ− → e−µ+µ− , τ → µ(e)π , τ → µ(e)η , τ → µ(e)η′ .

Class B

µ → eγ , τ → eγ , τ → µγ ,

KL,S → µe , KL,S → π0µe , Bd,s → µe , Bd,s → τe Bd,s → τµ ,

τ− → e−µ+e− , τ− → µ−e+µ− , (g − 2)µ .

Clearly the predictions for the decays in class B are more reliable, but we believe that

also our estimates of the rates of class A decays give at least correct orders of magnitude.

Moreover, as pointed out in [8], the logarithmic divergence in question has a universal

character and can simply be parameterized by a single parameter δdiv that one can in

principle fit to the data and trade for one observable. At present this is not feasible,
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but could become realistic when more data for FCNC processes will be available. This

reasoning assumes that δdiv encloses all effects coming from the UV completion, which is

true if light fermions do not have a more complex relation to the fundamental fermions of

the UV completion, that could spoil its flavour independence.

Bearing this in mind the main messages of our paper are as follows:

• As seen in table 2, several rates considered by us can reach the present experimental

upper bounds, and are very interesting in view of new experiments taking place in

this decade. In fact, in order to suppress the µ → eγ and µ− → e−e+e− decay

rates and the µ − e conversion rate in nuclei below the present experimental upper

bounds, the relevant mixing matrix in the mirror lepton sector, VHℓ, must be rather

hierarchical, unless the spectrum of mirror leptons is quasi-degenerate.

• The correlations between various branching ratios analyzed in detail in section 13

should allow a clear distinction of the LHT model from the MSSM. While in the

MSSM without significant Higgs contributions the dominant role in decays with three

leptons in the final state and in µ− e conversion in nuclei is played by the dipole op-

erator, this operator is basically irrelevant in the LHT model, where Z0-penguin and

box diagram contributions are much more important. While in the Higgs mediated

case, the distinction of the MSSM from the LHT model is less pronounced, all ratios

involving ℓi → ℓjγ and in particular decays with electrons in the final state still offer

excellent means to distinguish these two models.

• The measurements of all rates considered in the present paper should allow the full

determination of the matrix VHℓ, provided the masses of the mirror fermions and of

the new heavy gauge bosons will be measured at the LHC.

• We point out that the measurements of Br(KL → µe) and Br(KL → π0µe) will

transparently shed some light on the complex phases present in the mirror quark

sector.

• The contribution of mirror leptons to (g − 2)µ is negligible. This should also be

contrasted with the MSSM with large tan β and not too heavy scalars, where those

corrections could be significant, thus allowing to solve the possible discrepancy be-

tween SM prediction and experimental data [63].

• Another possibility to distinguish different NP models through LFV processes is

given by the measurement of µ → eγ with polarized muons. Measuring the angular

distribution of the outgoing electrons, one can determine the size of left- and right-

handed contributions separately [80]. In addition, detecting also the electron spin

would yield information on the relative phase between these two contributions [81].

We recall that the LHT model is peculiar in this respect as it does not involve any

right-handed contribution.

• It will be interesting to watch the experimental progress in LFV in the coming years

with the hope to see some spectacular effects of mirror fermions in LFV decays that
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in the SM are basically unmeasurable. The correlations between various branching

ratios analyzed in detail in section 13 should be very useful in distinguishing the LHT

model from other models, in particular the MSSM. In fact, this distinction should be

easier than through high-energy processes at LHC, as LFV processes are theoretically

very clean.

The decays µ → eγ, τ → µπ and (g − 2)µ have already been analyzed in the LHT

model in [20, 21]. While we agree with these papers that mirror lepton effects in µ → eγ

and τ → µπ can be very large and are very small in (g−2)µ, we disagree at the quantitative

level, as discussed in the text.
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A. Neutrino masses in the LHT model

Within the LH model without T-parity, there have been several suggestions how to nat-

urally explain the smallness of neutrino masses within the low-energy framework of the

model [82 – 85]. Although differing in the details, they are all based on a coupling of the

form

Yij(L
i)T ΦC−1Lj + h.c. , (A.1)

where Li are the left-handed SM lepton doublets and C is the charge conjugation operator.

This term violates lepton number by ∆L = 2 and generates Majorana masses for the

left-handed neutrinos of size

mij = Yijv
′ , (A.2)

with v′ being the VEV of the scalar triplet Φ.

Thus, in order to explain the observed smallness of neutrino masses, either Yij or v′/v

has to be of O(10−11). While in the case of Yij, this appears to be an extremely fine-tuned

scenario, in the case of v′ some so far unknown mechanism could be at work that ensures

the smallness of v′. Such a mechanism would also be very welcome from the point of view

of electroweak precision observables.

Indeed, (A.1) is a concrete example for the general mechanism found and discussed

in [86] to generate Majorana neutrino masses for the left-handed neutrinos through their

interaction with a triplet scalar field.

One should however be aware of the fact that (A.1) explicitly breaks the enlarged

[SU(2) × U(1)]2 gauge symmetry of the LH model, while it is invariant under SU(2)L ×
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U(1)Y . Consequently, in [84] the interaction (A.1) has been encoded in the gauge-invariant

expression

Yij(L
i)T Σ∗C−1Lj + h.c. , (A.3)

where Σ is an SU(5) symmetric tensor containing, amongst others, the scalar triplet Φ.

Now, mij is given by

mij = Yij

(

v′ +
v2

4f

)

, (A.4)

so that Yij ∼ O(10−11) is necessarily required in order to suppress also the second contri-

bution.

In the case of the LHT model, an interaction of the form (A.1) is forbidden by T-parity.

However, one could T-symmetrize the interaction term (A.3), leading to

Yij

[

(Li
1)

T Σ∗C−1Lj
1 + (Li

2)
T ΩΣΩC−1Lj

2

]

+ h.c. , (A.5)

where Ω = diag(1, 1,−1, 1, 1). In this way, a neutrino mass matrix

mij = Yij
v2

4f
(A.6)

is generated. Note that this corresponds to only the second term in (A.4), as the first term

is forbidden by T-parity. So again we are forced to fine-tune Yij to be O(10−11), which is

almost as unnatural as just introducing a standard Yukawa coupling to make the neutrinos

massive.

A different way to implement naturally small neutrino masses in Little Higgs models

has been developed for the Simplest Little Higgs model in [87, 88]. Here, three TeV-scale

Dirac neutrinos have been introduced, with a small (∼ 0.1 keV) lepton number violating

Majorana mass term. Like that, naturally small masses for the SM neutrinos are generated

radiatively. This idea can easily be applied to the LHT model. However, as already

discussed in [88], the mixing of the SM neutrinos with the heavy Dirac neutrinos appears at

O(v/f), so that f is experimentally constrained in this framework to be at least ∼ 3−4TeV.

This bound is much stronger than the one coming from electroweak precision constraints,

f >∼ 500GeV [5], and re-introduces a significant amount of fine-tuning in the theory. For

that reason, we do not follow this approach any further.

Thus so far we did not find a satisfactory way to naturally explain the smallness of

neutrino masses in the LHT model. In fact, it is easy to understand why this does not

work. In order to keep the relevant couplings of O(1), there should be either a very small

scale, as v′ in the LH model, or a large hierarchy of scales, as in the see-saw mechanism [89],

present in the theory.9 However, in the LHT model the only relevant scales are

v = 246GeV , f ∼ 1TeV , 4πf ∼ 10TeV , (A.7)

which are all neither small enough nor widely separated.

9Note that also the smallness of the lepton number violating scale in the model of [88] would require

some explanation.

– 44 –



J
H
E
P
0
5
(
2
0
0
7
)
0
1
3

To conclude, we find that the LHT model cannot naturally explain the observed small-

ness of neutrino masses. This, in our opinion, should however not be understood as a failing

of the model. After all, the LHT model is an effective theory with a cutoff of O(10TeV),

while the generation of neutrino masses is, as in see-saw models, usually understood to be

related to some much higher scale, which will in turn be described by the UV completion of

the model. Consequently, in our analysis we have simply assumed that the mechanism for

generating neutrino masses is incorporated in the (unspecified) UV completion, and that

the details of this mechanism have only negligible impact on the low-energy observables

studied in the present paper.

B. Relevant functions

D0(x) = −4

9
log x +

−19x3 + 25x2

36(x − 1)3
+

x2(5x2 − 2x − 6)

18(x − 1)4
log x , (B.1)

E0(x) = −2

3
log x +

x2(15 − 16x + 4x2)

6(1 − x)4
log x +

x(18 − 11x − x2)

12(1 − x)3
, (B.2)

D′
0(x) = −3x3 − 2x2

2(x − 1)4
log x +

8x3 + 5x2 − 7x

12(x − 1)3
, (B.3)

E′
0(x) =

3x2

2(x − 1)4
log x +

x3 − 5x2 − 2x

4(x − 1)3
, (B.4)

R2(yi) = −
[

yi log yi

(1 − yi)2
+

1

1 − yi

]

, (B.5)

F2(yi) = −1

2

[

y2
i log yi

(1 − yi)2
+

1

1 − yi

]

, (B.6)

F uū (yi, z;WH) =
3

2
yi − F5 (yi, z) − 7F6 (yi, z) − 9U (yi, z) , (B.7)

F dd̄ (yi, z;WH) =
3

2
yi − F5 (yi, z) − 7F6 (yi, z) + 3U (yi, z) , (B.8)

F5 (yi, z) =
y3

i log yi

(1 − yi) (z − yi)
+

z3 log z

(1 − z) (yi − z)
, (B.9)

F6 (yi, z) = −
[

y2
i log yi

(1 − yi) (z − yi)
+

z2 log z

(1 − z) (yi − z)

]

, (B.10)

U (yi, z) =
y2

i log yi

(yi − z) (1 − yi)
2 +

z2 log z

(z − yi) (1 − z)2
+

1

(1 − yi) (1 − z)
, (B.11)

G (yi, z;ZH) = −3

4
U (yi, z) , (B.12)

G1

(

y′i, z
′;AH

)

=
1

25a
G

(

y′i, z
′;ZH

)

, (B.13)

G2 (yi, z; η) = − 3

10a

[

y2
i log yi

(1 − yi) (η − yi) (yi − z)
(B.14)

+
z2 log z

(1 − z) (η − z) (z − yi)
+

η2 log η

(1 − η) (yi − η) (η − z)

]

,
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Codd(yi) =
1

64

v2

f2

[

yiSodd − 8yiR2(yi) +
3

2
yi + 2yiF2(yi)

]

, (B.15)

Dodd(yi) =
1

4

v2

f2

[

D0(yi) −
7

6
E0(yi) −

1

10
E0(y

′
i)

]

, (B.16)

Sodd =
1

ε
+ log

µ2

M2
WH

−→ log
(4πf)2

M2
WH

, (B.17)

F (zi, yj;WH) =
1

(1 − zi)(1 − yj)

(

1 − 7

4
ziyj

)

+
z2
i log zi

(zi − yj)(1 − zi)2

(

1 − 2yj +
ziyj

4

)

−
y2

j log yj

(zi − yj)(1 − yj)2

(

1 − 2zi +
ziyj

4

)

, (B.18)

A1(zi, yj;ZH) = − 3

100a

[

1

(1 − z′i)(1 − y′j)
+

z′izi log z′i
(zi − yj)(1 − z′i)

2
(B.19)

−
y′jyj log y′j

(zi − yj)(1 − y′j)
2

]

,

A2(zi, yj;ZH) = − 3

10

[

log a

(a − 1)(1 − z′i)(1 − y′j)
+

z2
i log zi

(zi − yj)(1 − zi)(1 − z′i)
(B.20)

−
y2

j log yj

(zi − yj)(1 − yj)(1 − y′j)

]

,

L1(yi) =
1

12(1 − yi)4
[

−8 + 38yi − 39y2
i + 14y3

i − 5y4
i + 18y2

i log yi

]

, (B.21)

L2(yi) =
1

6(1 − yi)4
[

−10 + 43yi − 78y2
i + 49y3

i − 4y4
i − 18y3

i log yi

]

. (B.22)
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